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Abstract 
Randomized controlled trials (RCTs) are widely considered to be the gold standard in evaluating the impacts of a 
social program. When an RCT is infeasible, researchers often estimate program impacts by comparing outcomes 
of program participants with those of a nonexperimental comparison group, adjusting for observable differences 
between the two groups. Nonexperimental comparison group methods could produce unbiased estimates if the 
underlying assumptions hold, but those assumptions are usually not testable in practice. Prior studies generally 
find that nonexperimental designs fail to produce unbiased estimates. However, these studies have been criticized 
for using only limited pre-intervention data, measuring outcomes and covariates inconsistently for different 
research groups, or drawing comparison groups from dissimilar populations. The present study was designed to 
address these challenges. We test the validity of four different comparison group approaches—OLS regression 
modeling, exact matching, propensity score matching, and fixed effects modeling—comparing nonexperimental 
impact estimates from these methods with an experimental benchmark. The analysis uses data from an 
experimental evaluation of charter schools and comparison data for other students in the same school districts in 
the baseline period. We find that the use of pre-intervention baseline data that are strongly predictive of the key 
outcome measures considerably reduces but might not completely eliminate bias. Regression-based 
nonexperimental impact estimates are significantly different from experimental impact estimates, though the 
magnitude of the difference is modest. In this study, matching estimators perform slightly better than do estimators 
that rely on parametric assumptions and generate impact estimates that are not significantly different from the 
experimental estimates. However, the matching and regression-based estimates are not greatly different from one 
another. These findings are robust to restrictions on the comparison group used, the modeling specifications 
employed, and the data assumed to be available. 
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Foreword 

The National Center for Education Evaluation and Regional Assistance (NCEE) within the Institute 
of Education Sciences (IES) is responsible for (1) conducting evaluations of federal education 
programs and other programs of national significance to determine their impacts, particularly on 
student achievement; (2) encouraging the use of scientifically valid education research and evaluation 
throughout the United States; (3) providing technical assistance in research and evaluation methods; 
and (4) supporting the synthesis and wide dissemination of the results of evaluation, research, and 
products developed. 

In line with its mission, NCEE supports the expert appraisal of methodological and related 
education evaluation issues and publishes the results through two report series. The NCEE 
Technical Methods Report series offers solutions and/or contributes to the development of specific 
guidance on state-of-the-art practice in conducting rigorous education research. The NCEE 
Reference Report series is designed to advance the practice of rigorous education research by 
making available to education researchers and users of education research focused resources to 
facilitate the design of future studies and to help users of completed studies better understand their 
strengths and limitations. 

This NCEE Reference Report examines the validity of several nonexperimental methods for 
estimating the effects of an educational intervention by comparing the impact estimates that 
nonexperimental methods generate with an experimental benchmark. The present study aims to 
address limitations of prior studies, which have been criticized for using only limited pre-
intervention data, measuring outcomes and covariates inconsistently for different research groups, 
or drawing comparison groups from dissimilar populations. The study tests the validity of four 
comparison group approaches—regression-based modeling, exact matching, propensity score 
matching, and fixed effects modeling—using data from an experimental evaluation of charter 
schools and comparison data for other students in the same school districts in the baseline period. 
The study finds that the use of pre-intervention baseline data that are strongly predictive of the key 
outcome measures considerably reduces but might not completely eliminate bias. Regression-based 
nonexperimental impact estimates are significantly different from experimental impact estimates, 
though the magnitude of the difference is modest. In this study, matching estimators perform 
slightly better than do estimators that rely on parametric assumptions and generate impact estimates 
that are more positive than the experimental benchmarks but not significantly different. However, 
the matching and regression-based estimates are not greatly different from one another. Hence, bias 
may remain in the matching estimates, but the bias is too small to reliably detect without very large 
sample sizes. These findings are robust to restrictions on the comparison group used, the modeling 
specifications employed, and the data assumed to be available. 
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I. INTRODUCTION 

Experimental evaluations based on randomized controlled trials (RCTs) are widely considered 
to be the gold standard in evaluating the impacts of a social program. However, an RCT is not 
always feasible. In some contexts, it might not be logistically possible or ethical to exclude 
individuals from participating in the program. In other contexts, researchers seeking to estimate a 
program’s impact might lack the authority or resources to employ a random assignment design, even 
if it were logistically possible. 

When an RCT is infeasible, researchers often resort to a nonexperimental approach for 
estimating program impacts. A popular class of nonexperimental designs uses a nonrandomly 
selected comparison group to represent what would have happened to the treatment group had they 
not participated in the program. However, the assumptions underlying nonexperimental evaluations 
are usually not testable in practice. This methodological study examines the validity of four different 
comparison group approaches, using data from the experimental evaluation of charter schools 
(Gleason et al. 2010) to test whether these comparison group designs can replicate the findings from 
a well-implemented random assignment study. 

A. Why Assess Nonexperimental Approaches to Estimating Impacts? 

The objective of an impact evaluation is to identify how an intervention changed individuals’ 
outcomes above and beyond any changes that would have occurred in the absence of the 
intervention. We can readily observe the post-intervention outcomes for individuals who are 
exposed to the intervention—the treatment group—but we cannot directly observe the post-
intervention outcomes those same individuals would have experienced had they not been exposed to 
the intervention. Instead, some other group that was not exposed to the intervention is used to 
estimate the counterfactual. In an experimental evaluation design, the randomly assigned control 
group is used to estimate the counterfactual. When implemented well, an RCT ensures that the 
control group does not differ from the treatment group in any systematic way that could bias the 
estimated treatment effect. Successful implementation of an RCT is no small hurdle—the 
assignment process must be correctly applied, sample attrition must be low for both the treatment 
and control groups, and most individuals in the control group have to comply with their group 
assignments1—but these factors can be monitored and quantified. 

In contrast, a comparison group design estimates the counterfactual using a group that was not 
exposed to the intervention for any number of nonrandom reasons. In some contexts, the 
comparison group comprises those who chose not to participate, those who were ineligible for the 
intervention or study participation, or a group in an area where the intervention was not offered. 

                                                 
1 Noncompliance by the control group (crossing over and receiving treatment) can be accounted for and still 

produce unbiased estimates of the impact of a program on those who were treated—the impact of “treatment on the 
treated”—even if noncompliance is considerable (Angrist et al. 1996). However, if noncompliance is frequent, the 
required assumptions become more crucial for producing unbiased estimates and, in some contexts, might be less 
plausible. The estimated impact of the offer to participate in the program—the impact of the “intention to treat”—is 
unbiased even if noncompliance is considerable.  
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Comparison group methods can, in theory, produce impact estimates that are as good as those 
of a well-implemented experimental design. However, even the best comparison group designs rely 
on the assumption that the analysis can adjust for any differences between the characteristics of the 
treatment and comparison groups prior to treatment, and that on average, the two groups do not 
differ on any other unobserved dimensions that are correlated with the outcome(s) of interest 
(Rosenbaum and Rubin 1983; Little and Rubin 2000). If these assumptions are incorrect, the impact 
estimates might be biased. Moreover, these assumptions involve unobserved as well as observed 
characteristics, and as such they are not testable. 

One approach to investigating the question of whether comparison group methods produce 
unbiased impact estimates involves efforts to replicate impact estimates from an existing 
experimental study using a comparison group design—a validation approach that Cook et al. (2008) 
refer to as a “within-study comparison.” A within-study comparison starts with a well-implemented 
experimental study that can be credibly believed to have produced unbiased impact estimates and 
then applies a comparison group design to estimate the same impact parameters using data collected 
at least in part in the same study (and ideally using the same sample of treatment group members). If 
the impact estimates from the comparison group design match the experimental impact estimates, 
then this would provide evidence that comparison group designs can produce unbiased impact 
estimates. Because the objective of within-study comparisons such as the present paper is to see if 
nonexperimental methods replicate experimental findings, within-study comparisons are also 
sometimes called replication studies.2 

B. Previous Literature 

Most of the existing replication studies of comparison group designs have been conducted for 
evaluations of job training programs, and the majority of these have found that comparison group 
designs cannot reliably replicate experimental impact estimates. This was the conclusion of the early 
replication work of Lalonde (1986), Fraker and Maynard (1987), and Friedlander and Robins (1995), 
and has been a consistent finding in most subsequent replication studies, as summarized by 
Glazerman et al. (2003). An exception was the work by Dehejia and Wahba (1999), which found that 
propensity score matching methods could replicate experimental results, but Smith and Todd (2005) 
subsequently found that these results were not robust to minor changes in the analysis sample. 
Dehejia and Wahba’s findings were also sensitive to the pre-intervention variables used, suggesting 
that rich pre-intervention data are necessary to overcome possible selection on observables.  

More recent work has expanded replication studies to other contexts. For example, Bloom et al. 
(2005) conducted a within-study comparison based on an evaluation of welfare-to-work programs, 
but the findings have been the same—that nonexperimental methods could not reproduce the 
experimental impact estimates. Similarly, Peikes et al. (2008) were unable to replicate an 
experimental estimate of the impact of an employment promotion program for Social Security 
recipients with disabilities using nonexperimental methods. In particular, they used propensity score 
matching techniques and were unable to replicate the experimental impact estimates despite having a 
very large pool of potential comparison group members and data on earnings (the key outcome 

                                                 
2 We contrast this type of replication study with studies where the objective is to see if a different researcher can 

independently replicate the findings of an existing study using the same methods and data sources, such as in Rothstein 
(2007) and McCrary (2002). 
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measure) during a five-year baseline period. In many cases, these within-study comparisons found 
that the results from nonexperimental designs were not just of different magnitudes from their 
respective experimental benchmarks—the estimates were sometimes in the opposite direction. 

Education interventions are attractive for a within-study comparison because achievement test 
scores are often the outcomes of greatest interest. Because achievement test scores are highly 
correlated over time, baseline measures of this outcome are likely to be highly predictive of follow-
up measures of the outcome. Achievement test scores are also measured uniformly for most 
students in the same grade, at least within a locality and often within an entire state. Despite these 
advantages, few within-study comparisons have attempted to replicate experimental impact estimates 
of educational interventions. Two exceptions are the within-study comparisons by Agodini and 
Dynarski (2004) and Wilde and Hollister (2007), which base their analyses on a drop-out prevention 
program and the Tennessee Project Star class size experiment, respectively. Both studies conclude 
that nonexperimental methods fail to replicate experimental findings. However, neither study is able 
to fully exploit the possible advantages that could make nonexperimental designs in education 
contexts more attractive than nonexperimental designs implemented in other contexts. In particular, 
the baseline measures used by Wilde and Hollister were limited (most notably, lacking baseline test 
scores), and the key outcome examined by Agodini and Dynarski was school drop-out, which is not 
conducive to pre-intervention measurement. Recent work by Bifulco (2010), Abdulkadiroglu et al. 
(2009), and Angrist et al. (2011) is more encouraging, but the studies yield mixed results. Bifulco’s 
analysis is based on magnet schools near Hartford, Connecticut, and it found that propensity score 
methods replicated the experimental findings when highly predictive baseline data were used, though 
the study’s sample sizes were somewhat small, which limited the precision of the estimates. 
Abdulkadiroglu et al. conducted separate analysis of charter schools and pilot schools in Boston; 
Angrist et al. extended those analyses to the state of Massachusetts. Those studies found that 
statistical controls yielded similar findings as their experimental benchmarks for the charter school 
analysis, but the magnitudes of the impact estimates were different for some subsets of charter 
schools. For the pilot schools, Abdulkadiroglu et al. found that also separately examined pilot 
schools, for which the nonexperimental methods yielded very different estimates than the 
experimental design.3 Hence, the validity of comparison group methods for studies of educational 
settings remains an unsettled issue. 

Cook et al. (2008) and Shadish et al. (2008) argued that the failure of comparison group designs 
to replicate experimental results stems from differences in data sources or unsuitable comparison 
groups. Cook et al. (2008) describe conditions that efforts to validate nonexperimental methods via a 
within-study comparison with a randomized experiment should attempt to meet. These conditions 
include the following: 

1. “A within-study comparison has to demonstrate variation in the types of methods being contrasted—one 
comparison group has to be constructed via a random assignment mechanism and the other by whatever 
systematic mechanism is under test.” 

2. “The two assignment mechanisms cannot be correlated with other factors that are related to the study 
outcome.” For example, outcomes for the sample members in the experiment should be 

                                                 
3 The studies by Abdulkadiroglu et al. and Angrist et al. were designed to assess the impacts of charter and pilot 

schools more generally. They were not dedicated within-study comparisons. Rather, they used within-study approaches 
in a subset of oversubscribed schools to validate the regression methods used for the whole samples. 
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measured using the same data source as outcomes for sample members in the 
nonexperimental design. 

3. “A quality within-study comparison also has to demonstrate that the randomized experiment deserves its 
status as a causal gold standard.” As described previously, the assignment process used in the 
experimental study must be correctly applied, sample attrition must be low for both the 
treatment and control groups, and control group noncompliance should ideally be 
minimal. 

4. “It is also important that the nonexperiment be a good example of its type.” That is, it must meet 
the conditions necessary for it to be a considered a credible nonexperimental study. As 
summarized earlier by Heckman et al. (1999), to be credible, the comparison group must 
be selected from the same geographic area and time period as the treatment group (a 
point that is especially salient in Friedlander and Robins [1995]); baseline data that are 
strongly predictive of the outcome measures must be available for both the treatment 
group and the comparison group; and the pre- and post-intervention data in the 
experimental and nonexperimental analyses must be collected using similar instruments 
administered in similar circumstances. 

5. “An experiment and nonexperiment should estimate the same causal quantity.” That is, the 
parameter estimated in the two studies must be an estimate of the same statistical 
relationship and for the same population. For example, if the experimental benchmark is 
an estimated impact of the intent to treat (ITT), the nonexperimental estimates should 
also estimate the ITT impact. 

6. “A within-study comparison should be explicit about the criteria it uses for inferring correspondence 
between experimental and nonexperimental results.” 

7. “The data analyst should perform the nonexperimental analyses before learning the results of the 
experimental ones.” 

C. Contributions of this Study 

The charter school study offers an excellent opportunity to conduct a within-study comparison 
of nonexperimental and experimental estimates of the impacts of attending a charter school (or 
being offered admission to a charter school), and to conduct the comparison in a way that meets the 
conditions laid out by Cook et al. The charter school study employed an experimental research 
design based on well-implemented charter school lotteries (Gleason et al. 2010). The specific 
objective of the current study is to estimate the impacts of charter schools using four common 
comparison group methods and assess whether these nonexperimental impact estimates are the 
same as the experimental impact estimates. For about half of the sites in the experimental study, we 
were able to obtain data on other students who were in the same school districts as the lottery 
participants but did not participate in the lottery. Using these sites from which data are available for 
lottery and nonlottery students, we conducted nonexperimental analyses using the treatment group 
from the charter school lotteries and comparison groups formed from other students in the same 
baseline schools or school districts. We then estimated the experimental impacts for the same set of 
sites and compared the nonexperimental impact estimates with the experimental benchmark, 
separately for each of our four nonexperimental comparison group approaches. The four 
comparison group approaches we considered are regression modeling, “exact” matching on a 
specified set of baseline characteristics, propensity score matching on a broader set of baseline 
characteristics, and fixed effects modeling. (We discuss each of these models in more detail in 
Chapter IV.) 
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Shedding light on the validity of assumptions underlying nonexperimental methods is valuable 
because, in many contexts, random assignment is not feasible. Even when random assignment is 
possible for an intervention, it might not be possible for everyone served by the intervention, in 
which case the findings might not generalize broadly. For example, the experimental analysis of 
charter schools by Gleason et al. (2010), on which the current study is based, used lotteries 
employed by oversubscribed charter schools. Though their evaluation design had strong internal 
validity, the findings do not generalize to charter schools that were not oversubscribed. 
Nonoversubscribed charter schools could potentially have different impacts on student 
performance. Nonexperimental methods can be applied to study broader populations of schools and 
students—and all four of the nonexperimental methods examined in this report have been applied 
to estimate charter school impacts in different settings. However, skepticism remains that the 
nonexperimental impact estimates are unbiased (Hoxby and Murarka 2007). For example, a recent 
study by researchers at the Stanford Center for Research on Education Outcomes (CREDO 2009), 
uses a matched comparison group design to assess the impacts of many charter schools nationwide 
and extends the analysis to students who have been enrolled in charter schools their entire academic 
careers. The CREDO design is susceptible to the same core set of untestable assumptions as other 
nonexperimental designs (Hoxby 2009). However, if there is strong evidence that the underlying 
assumptions are valid, nonexperimental estimates could help answer research questions that are 
infeasible with random assignment. This study seeks to test collectively the set of assumptions 
underlying various nonexperimental designs by comparing the impact estimates they produce with 
estimated impacts from an experimental design. 

Our within-study comparison contributes to the existing body of knowledge in two main ways. 
This study is one of the few replication studies of comparison group designs that (1) focuses on an 
education intervention and outcomes and (2) examines nonexperimental designs using a within-
study comparison approach that meets the standards described in Cook et al. (2008) and Shadish et 
al. (2008). Specifically, we use a well-implemented RCT as the basis for our study; we examine four 
common comparison group approaches that are considered to be rigorous nonexperimental designs; 
we have outcome measures and control variables from the same source for our experimental and 
nonexperimental samples; our comparison group is drawn from same local areas as the experimental 
sample; we applied each approach such that the target parameter we are estimating is the same; we 
developed the nonexperimental models before learning the exact experimental benchmark 
estimates;4 and we explicitly lay out our criteria in advance for determining whether the 
nonexperimental estimates match their experimental benchmarks. Our study also has the advantage 
that, rather than being limited to one city, it uses data from 15 localities across six states. 
Consequently, our sample sizes are large, and idiosyncrasies in one or two sites are less likely to 
determine whether our nonexperimental analyses replicate the experimental findings. 

The remainder of the report is structured as follows. We describe the charter school study data 
in Chapter II. Chapter III presents the charter school impact estimates using the benchmark 
experimental design. Chapter IV discusses the comparison group methods and the estimated 
                                                 

4 The charter school study on which the present study is based was led by one of the present study’s coauthors, 
Philip Gleason, and the study was publicly available. However, the present study uses a subset of sites for which 
comparison group data were available, and so the experimental benchmark was different from that produced by the 
original charter school study. Although the overall impact estimates from the original charter school study were publicly 
available before we conducted the nonexperimental analysis, we had not yet produced the experimental impact estimates 
that would serve as the experimental benchmark at the time we conducted the nonexperimental analyses.  
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impacts using those designs, and Chapter V compares the two sets of impact estimates using both 
formal and informal metrics. Chapters II to V also discuss in more detail how we have met the 
requirements laid out by Cook et al. (2008). We conclude and discuss further extensions in 
Chapter VI. 
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II. DATA USED IN THE ANALYSIS 

This chapter begins by summarizing the data available from the experimental study, the pool of 
comparison students, and the analysis file we constructed from those raw data. We also describe the 
key variables used in our analysis, data restrictions we made, data challenges, and how we resolved 
those issues. 

A. Data Sample 

The charter school study collected data for two cohorts of students who applied to enter fifth, 
sixth, or seventh grade at participating charter schools in the 2005–2006 or 2006–2007 school years.5 
The study then collected follow-up data for sample members over two years (2005–2006 and 2006–
2007 for cohort 1, 2006–2007 and 2007–2008 for cohort 2) and baseline data over the prior 
two years for each cohort. 

The experimental sample includes students who applied to attend charter middle schools in the 
study and who participated in the schools’ admission lotteries. Students who “won” the lottery and 
were offered admission make up the treatment group for the study, whereas those who “lost” the 
lottery and were not offered admission form the control group. The control group is used only in 
the experimental analysis. The treatment group is used in both the experimental and 
nonexperimental analyses and is the population to which all analyses are designed to generalize. 

The comparison group for the nonexperimental analysis is drawn from administrative data 
received from individual states or, sometimes, districts themselves. Of the 15 states and 36 charter 
schools included in the original charter school study, we received data from 6 states covering all 
students in the same school districts as 15 charter schools from the original study. Both the 
experimental and comparison group data are restricted to these 15 sites. To address the concerns 
about earlier within-study comparisons raised by Cook et al. (2008), Shadish et al. (2008), and 
Heckman et al. (1999), we further restricted the comparison group data to students who attended 
the same traditional public schools (TPSs)—what we call feeder schools—and grades as did the 
treatment students before they had the chance to attend the study’s charter middle schools.6 
This restriction ensures that the pool of comparison students is most similar to the experimental 
sample in terms of neighborhoods and the schools to which the students have access. 

Some states were not able to give us information for all of the relevant districts. Two states gave 
us no information. However, in each of those states we were able to obtain data from a single 
district within each of those states that included a participating charter school. However, applicants 
to a given charter school often came from multiple school districts. In these instances only the 

                                                 
5 In the case of one participating charter school, the sample included not only students who applied to the entry 

grade (fifth grade) but also students who applied to the subsequent grade (sixth grade). See Gleason et al. (2010) for 
details about the sample selection and other methodological aspects of the charter school study. 

6 Bifulco (2010) and Hoxby and Murarka (2007) make the counterpoint that students from the same 
neighborhoods or baseline feeder schools also are more likely to have self-selected out of charter schools and so are 
fundamentally different from those who chose to apply to charter schools. We explore this possibility (among other 
sensitivity analyses) in Chapter V. 
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experimental and comparison students from the districts from which we received data were included 
in our analysis. 

We imposed two additional data restrictions for the comparison group and experimental data to 
ensure the comparability of the two data sources and to ensure that the experimental and 
nonexperimental methods would estimate the same parameter. We limited the experimental sample 
to students who attended a TPS in the baseline year.7 We also restricted the comparison group to 
students who were in the same grades at baseline as the charter school applicants in each site.  

Lastly, we included students in the comparison group and experimental samples only if they had 
at least one baseline year test score and one follow-up year test score. Restricting the samples to 
students who have at least one baseline year test score ensures that there is a minimum amount of 
pre-intervention data for everyone in the sample; as discussed in Chapter I, pre-intervention 
measures of the outcomes of interest are especially crucial for nonexperimental designs to be viable. 
Restricting the samples to students who have at least one follow-up year test score ensures that the 
students could be used in the analysis. 

Table II.1 reports the sample sizes for the three research groups used in our analysis. In total, 
our final analysis sample includes 635 treatment students, 304 control students, and 20,407 
comparison students. Importantly, among the students who meet our restrictions on baseline data, 
there is minimal difference between the percentages of treatment and control students who also 
meet each restriction—that is, have valid follow-up data (94 and 89 percent, respectively), so the 
experimental impact estimates are not driven by differential attrition.8 Comparison students are 
more likely to have sufficient follow-up data for inclusion than are the treatment or control students. 
This is because the students who applied for a charter school lottery are more likely to be exploring 
non-TPS education options, including outside options (such as private schools), from which we 
would not observe follow-up test scores. 

Table II.1. Sample Sizes after Data Restrictions 

Percentage of Students 
with Sufficient Baseline 

Data Who also Have Follow-
Up Data 

Students with Sufficient 
Baseline Data in Feeder 

Schools at Baseline 

Students with Sufficient 
Baseline and Follow-Up 

Data 

Treatmenta 678 635 94 
Control 341 304 89 
Comparison b 21,133 20,407 97 

a Treatment and control students in a traditional public school at baseline, as described in the text. 
b Comparison students in feeder schools, as described in the text. 

                                                 
7 This restriction is similar to, although not exactly the same as, the sample restrictions used in the primary analysis 

of Gleason et al. (2010). 

8 In one other district that we initially included in our analysis, control students were much less likely than 
treatment students to have follow-up test scores. Consequently, we excluded the affected charter schools from our 
analyses. 
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B. Overlap Between Experimental and Comparison Group Samples 

The raw data we obtained for the comparison group comprised all students in the state (or 
district), restricted to students who attended traditional public schools at baseline and during the 
follow-up years, whether or not they were part of the charter school study as a treatment or control 
group member. We attempted to remove students from the comparison data if they were also in the 
charter school study, so that the remaining comparison group would emulate a comparison group 
that would be available were there not a lottery granting students admission to the charter schools. 
In other words, by design, we created a comparison group composed of students who had chosen 
not to apply to the charter school lotteries, which is the comparison group that would be available to 
a researcher conducting a nonexperimental impact analysis in most contexts (in particular, for 
studies of nonoversubscribed charter schools that do not hold admissions lotteries).9   

C. Outcome Measures and Covariates 

For all but two states, we have four years of achievement test scores in reading and math for 
students in the study sample (Table II.2). Two years of test scores pertain to the period before 
students applied to the lottery charter schools (which we term baseline and prebaseline for the year 
immediately preceding charter school application and two years prior, respectively), and two years 
test scores in the follow-up period. Achievement test scores were standardized based on the state 
means and standard deviations provided for the associated tests in a given year and grade.10 We also 
have baseline demographic data, which for most sites include race/ethnicity, gender, limited English 
proficiency status, special education status, and free or reduced-price lunch (FRPL) eligibility. For 
race/ethnicity, we constructed three categories: Black, Hispanic, and Other. We did not receive all of 
the requested demographic information from some states (Table II.2). One state did not send us 
race/ethnicity data and one did not send us data on gender.  

                                                 
9 There could be settings (including studies of charter school) in which lotteries are used to select some of the 

individuals but others are selected nonrandomly. A researcher might not distinguish between random and nonrandom 
selection in the analysis because he or she does not know which students were selected through lotteries, because 
statistical power for the experimental sample is low, or other reasons. In those cases, the comparison group would be a 
mixture of randomly assigned controls and nonrandomly assigned comparisons. Conceptually then, a comparison group 
design in such a study is really a mixture of experimental and nonexperimental designs (even if it is not known to the 
researchers which students were randomly assigned). We know the experimental part is valid, so to know whether the 
mixed design is valid, we would have to consider only whether the nonexperimental part is valid. Thus, setting up the 
within-study comparison in which the controls are segregated from the comparisons also informs us about whether 
these mixed designs are valid. 

10 Some students could be retained in a grade and would, hence, repeat the associated standardized test. We include 
these who repeated a grade and standardized their tests based on the mean and standard deviation of the test they took. 
This creates a potential mismatch, because that student would be compared against other students in the same stratum 
who were taking a different test. However, grade retention was quite uncommon among students in the analysis sample, 
so this is unlikely to materially affect the findings. 
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Table II.2. Covariate Availability by State 

Number 
of 

Charter 
School 

Lotteries 

Free and 
Reduced-

Price Lunch 
Eligibility 

Race 
and 

Ethnicity

English 
Language 
Learner 

Baseline 
Tests 

Prebaseline 
Tests 

Disability 
Status  Gender 

State 1 1 X X X X X X 
State 2 2 X X X X X X 
State 3 5 X X X X X X 
State 4 5 X X X X X X X 
State 5 1 X X X X X X X 
State 6 1 X X X X X X 
Note:  In some instances, data come directly from the district rather than the state. 

To address the fact that we did not have valid data on all characteristics in all sites in our 
analysis and that some students were missing data on select baseline characteristics, we added 
missing data indicators for the demographics, baseline test scores, and pre-baseline test scores.11 If a 
value was missing, we set the missing indicator for that variable to one and set the value of the 
covariate to zero; this simple approach performed well in the simulations conducted by Puma et al. 
(2009).  

For the follow-up year test scores, we did not impute missing values. Thus, students for whom 
we were missing data on the key outcome being examined (year-1 mathematics and reading scores in 
our main analysis) were excluded from the analysis sample. 

We limit our primary analysis to math and reading test scores during the first year after students 
in the treatment group would have matriculated at the lottery charter schools. Limiting the number 
of statistical tests on which we base our conclusions avoids problems of multiple comparisons and 
simplifies the interpretation of the findings. At the same time, math and reading scores could 
conceivably have different properties, so we include both. We focus on first year test scores rather 
than second year scores because more students who have baseline test scores have first year scores 
than second, so the analysis sample size is larger.  

D. Sample Weights 

The charter school study used sampling weights to adjust for the fact that the probability of 
assignment to the treatment group varied across sites and cohorts. In our experimental analysis, we 
use the same weights with two modifications. First, as we discuss in more detail in Chapter III, our 
estimates in this report weight schools by the size of the treatment group at each charter school, 
rather than weighting each site equally, as Gleason et al. (2010) did. Second, because of the data 
restrictions described in Section A of this chapter, the relative shares of treatment and control 
students in each site changed in some sites from the original sample used in the charter school study. 
Furthermore, we wanted to ensure that the treatment and control students from the same site 
contributed the same relative amount of information to the overall experimental impact estimator. 
In other words, we did not want different proportions of treatment and control students from a 

                                                 
11 By construction, students in our analysis sample rarely had missing baseline test scores, as we restricted the 

analysis to students who had at least one baseline test score. However, some students had nonmissing reading test scores 
but missing math test scores, or vice versa. 
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given site to drive the overall impact estimator. To keep the proportions fixed, we rescaled the 
control group weights such that the weighted proportion of the control group in each site matches 
the weighted proportion of the treatment group in the site. We maintain this same principle for the 
nonexperimental analyses as well—the weighted proportion of the comparison group in each site is 
designed to match the weighted proportion of the treatment group in each site, to ensure that the 
parameters estimated for the nonexperimental analyses are the same as for the experimental analysis. 
Chapter IV describes in more detail exactly how this was achieved for the nonexperimental analyses. 
The calculations for the weights are described in more detail in Appendix A. 
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III. EXPERIMENTAL ANALYSIS 

In this chapter, we describe the experimental analysis that provides the benchmark impact 
estimates against which the nonexperimental impact estimates will be measured. Though the 
nonexperimental analyses were completed first, for expositional clarity, we present the experimental 
analysis that served as the benchmark first. 

A. Parameter of Interest 

In the charter school study, students’ actual charter school attendance could deviate from their 
assignment in the lottery. Most commonly, some students who “won” the lottery and were 
permitted to attend the charter school chose not to attend (18 percent of our treatment group). 
Conversely, a small number of students “lost” the lottery but nevertheless were able to attend a 
lottery charter school (4 percent of our control group). Additionally, students from both groups 
could instead attend another local charter school that was not part of the study; in practice, several 
students did (5 percent of the treatment group and 7 percent of the control group). Thus, the 
randomly assigned treatment group largely comprises students who attended a study charter school, 
and the control group largely comprises students who did not attend a study charter school and 
instead attended a TPS or a nonstudy charter school. 

Given that there was noncompliance with the lottery assignments, we considered whether the 
analysis would focus on estimating the impact of the intent to treat (ITT) or the impact of treatment 
on the treated (TOT). Conceptually, in the present context, the ITT contrasts the outcomes of 
individuals who received an offer of admission to the charter school group through a lottery with those 
who did not, regardless of whether they actually attended the charter school to which they were 
assigned. The TOT instead contrasts students who attended one of the study charter schools with 
those who did not. The ITT and TOT can both be estimated with either an experimental or a 
nonexperimental design. However, in practice, experimental analyses usually estimate the ITT, and 
nonexperimental analyses usually estimate the TOT. 

A fundamental requirement of a within-study comparison is that the experimental and 
nonexperimental analyses must provide estimates of the same empirical parameter (Cook et al. 
2008). Moreover, the experimental analysis must be a good example of a random assignment design; 
that is, it must deserve its status as a gold standard if it is to serve as the benchmark for the 
nonexperimental analysis. Considering both of these factors, we focus our study on comparing 
experimental and nonexperimental estimates of the ITT rather than the TOT. If we were to use the 
TOT instead, we could not be certain that any differences between the experimental and 
nonexperimental estimates were because the assumptions underlying the nonexperimental methods 
had failed, rather than a failure of the assumptions about noncompliers that are made when an 
experimental design estimates the TOT. Moreover, even if the assumptions underlying experimental 
estimates of the TOT are satisfied, experimental and nonexperimental designs do not estimate the 
TOT for the same population of students. An experimental TOT estimate would provide the 
estimated impact for compliers—those who would attend a charter school if offered admission but 
not otherwise. In contrast, the nonexperimental TOT estimate would provide the estimated impact 
for everyone who attended one of the study charter schools, including noncompliers who did not 
receive an offer of admission through a charter school lottery but nevertheless attended a study 
charter school, and their counterparts in the treatment group who attended one of the study charter 
schools but would have even if they had not been offered admission. However, though we focus on 
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ITT estimates, testing the validity of nonexperimental TOT estimates remains a worthy topic for 
future research.12  

B. Empirical Specification 

The charter school analysis uses data from six states and 15 charter schools, each with its own 
lottery and state-specific assessments. To maximize statistical power, the study focuses on an impact 
estimate that pools all sites for which we have data. State assessment measures have been 
standardized within state, year, and grade. In particular, the standardized score is calculated by 
subtracting the state mean score and dividing by the state standard deviation in a given year and 
grade. 

Our pooled impact estimate weights sites differently than the procedure used by Gleason et al. 
(2010). That study treated sites as mini-experiments, each of which was weighted equally in 
calculating the pooled impact estimate. However, the sizes of the sites varied considerably, and 
giving equal weight to sites with small and large sample sizes reduced statistical precision compared 
with weighting each site according to its sample size. In the present analysis, we do not need our 
pooled impact estimate to have an intuitive interpretation; we require only that it have a clean 
definition that we can apply to the nonexperimental estimates. Hence, to minimize design effects 
from weighting, our experimental analysis weights the treatment and control groups in each site 
proportional to the size of the treatment group in that site. (This weighting approach is applied to 
the nonexperimental analyses as well.) 

A simple difference in mean outcomes for the treatment and control groups would generate an 
unbiased impact estimate for the experimental analysis. However, regression adjustment can 
improve the precision of the impact estimate (Schochet 2007).13 We report these comparisons 
separately for the math and reading analysis samples, which differ slightly due to different numbers 
of cases with missing data on the outcome measure.  

Overall, the treatment and control groups in our analysis sample have similar pre-intervention 
test scores and demographic variables (Table III.1). However, compared with the control group, a 
greater proportion of the treatment group is Hispanic than is Black or another race/ethnicity. There 
are also marginal differences in the gender ratios, although those are not statistically significant. 
These slight imbalances in demographic characteristics were no more than would be expected by 
chance, but they provide further incentive to use regression adjustment in our main specification, 
though sensitivity checks reported in Chapter V reveal that the experimental impact estimates are 
fundamentally unchanged when we instead estimate impacts as a simple difference in means.  

                                                 
12 It would not be possible in some contexts to estimate an ITT impact with a nonexperimental design. Thus, in 

such contexts, our comparison of the nonexperimental ITT impact estimate with an experimental ITT impact estimate 
would be less relevant than a comparison of the nonexperimental and experimental TOT impact estimates. 

13 We found that estimating experimental impacts in a regression framework, rather than a simple difference in 
means, reduced the standard errors by about 40 percent without materially affecting the point estimates. 
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For our main specification, the experimental impacts were estimated using the following 
regression model: 

(1) α β ϕ θ ε= + + + +' ' ,i i i i iy T X S  

where yi  is the test score for student i at follow-up; Ti  is a binary variable equal to 1 if the student 
is selected through the lottery to attend a charter school and 0 otherwise; X i  is a vector of student 
covariates, which includes baseline math and reading test scores, pre-baseline math and reading test 
scores, race, gender, free/reduced-price lunch eligibility, ELL status, disability status, baseline and 
pre-baseline test scores for the other subject (math or reading), and interactions between some of 
these variables (described in more detail in the next chapter); and ε i  is an error term. S i  is a vector 
of binary indicators for the student’s site and grade, which helps control for fundamental differences 
across sites or between the test score measures used by each state. The parameter of interest in 
Equation (1) is β , which is the ITT estimate of the effect of applying to and being offered 
admission to the charter school. In estimating Equation (1), we use the sample weights described 
earlier. 

The specific baseline variables and higher-order terms included in the model were systematically 
chosen based on their correlations with the outcome measure. We describe this process in detail in 
Chapter IV. As demonstrated in Chapter V, the experimental estimates are robust to alternative 
regression specifications, so our benchmark estimates employ the specification developed in the 
nonexperimental regression analysis. This ensures that any differences between the significance 
levels of the experimental and nonexperimental results are not driven by differences in the 
explanatory power of the covariates. 



Table III.1. Baseline Covariates for the Full Experimental Sample 

Treatment Group 
(N = 629) 

Math Reading 

Control Group 
(N = 295) 

p-Value of 
aDifference  

Treatment Group 
(N = 630) 

Control Group 
(N = 296) 

p-Value of 
Difference 

Prior Test Scores Mean SD Mean SD Mean SD Mean SD 
Baseline Math 0.52 0.96 0.55 1.01 0.71 0.52 0.96 0.55 1.01 0.71 
Prebaseline Math 0.50 0.98 0.51 0.95 0.99 0.49 0.99 0.51 0.95 0.93 
Baseline Reading 0.43 0.94 0.45 0.90 0.82 0.43 0.94 0.45 0.90 0.82 
Prebaseline Reading 0.47 0.98 0.46 0.76 0.95 0.46 0.99 0.46 0.76 1.00 
Other Baseline Covariates Percentage Percentage Percentage Percentage 
Grade 

4th 
5th 
6th 

37
55

9

35
56
8

 0.88 
37 
55 

9 

36
56

8

 0.92 

Sex 
Female 
Male 

47 
53 

40 
60 

 0.44 
47 
53 

40 
60 

 0.45 

Race/Ethnicity 
Black, Non-Hispanic 
Hispanic 
White/Other 

12 
19 
69 

15 
12 
73 

 0.04* 
12 
19 
69 

15 
12 
73 

 0.05 

FRPL-Eligible 
Yes 
No 

33 
67 

32 
69 

 0.74 
33 
67 

32 
68 

 0.74 

IEPa 
Yes 
No 

26 
74 

26 
74 

 0.93 
26 
74 

26 
74 

 0.97 

English-Language Learner 
Yes 
No 

3 
97 

2  
98  

 0.22 
3 

97 
2 

98 

 0.30 

Missing Value Indicators Percentage Percentage Percentage Percentage 
Baseline Math 4 5 0.46 4 5 0.45 
Prebaseline Math 53 51 0.71 53 51 0.77 
Baseline Reading 4 6 0.51 4 6 0.52 
Prebaseline Reading 53 51 0.69 53 51 0.75 
Sex 36 37 0.72 36 37 0.74 
Race/Ethnicity 8 5 0.07 8 5 0.07 

15 

Source: Charter School Study (Gleason et al. 2010) and state or district achievement and demographic data. 

Note: This table presents descriptive statistics based on weighted estimates of means, standard deviations, and percentages. To be included in the analysis a 
treatment or control student must have a score for the outcome and at least one (of the two) baseline test scores. Percentages in this table might not sum 
to 100 due to rounding. All means are based on nonmissing values of the covariate. 

a Reported p-values for test scores and missing data indicators are from two-tailed t-tests. Reported p-values for categorical variables are from chi-square tests. 

b FRPL indicates free or reduced-priced lunch status; IEP is individualized education plan, an indicator of a student with mental or physical disabilities. 

c High percentages of missing values for some of the covariates are due to the lack of these data across one or more of the sites. 

*/** Significantly different from zero at the .05/.01 level. 

SD = standard deviation. 

N = sample size. 
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C. Results 

The experimental impacts that serve as the benchmark results for most of the nonexperimental 
approaches are presented in Table III.2. We estimate that students randomly selected to attend 
charter schools through the lottery have nearly identical average math test scores (0.58) as students 
in the control group (also 0.58). The estimated impact of -0.01 is statistically indistinguishable from 
zero. Likewise, treatment and control students have nearly identical average reading test scores 
(0.51). The estimated impact of charter schools on first-year reading test scores is 0.00. 

Table III.2. Estimates for Experimental Benchmarks, Full Sample 

Regression-Adjusted Meansa Impact 

Treatment Control Estimateb SE p-Valuec 

Math Test Score 0.58 0.58 -0.01 0.04 0.86 
Reading Test Score 0.51 0.51 0.00 0.04 0.96 
Note: The treatment and control group samples included 629 and 295 students, respectively, for 

math and 630 and 296 students, respectively, for reading. 

a Treatment and control means are regression-adjusted using the average characteristics of the combined 
treatment and matched comparison group samples. 

b The difference between treatment and control group mean outcomes might not equal the impact 
estimate due to rounding. 

c */** indicates that an impact is statistically significantly different from zero at the .05/.01 level, 
respectively, using a two-tailed t-test. 

SE = standard error. 

As we discuss in the next chapter, the fixed effects model we estimate requires that students 
have nonmissing test score data for the prebaseline, baseline, and first follow-up periods. 
Consequently, the experimental impact estimates we use as the benchmark for the fixed effects 
model impose the same additional restrictions on the study sample. Because students are more likely 
to be missing prebaseline test scores than baseline scores, and because several states could not 
provide prebaseline test scores at all, this restriction cuts the sample by more than half, and thereby 
reduces the statistical power for estimating impacts using both the nonexperimental approach and 
the corresponding experimental benchmark.  

Consistent with the full sample, the baseline covariates are not significantly different for the 
treatment and control groups in this restricted subsample (Appendix B, Table B.1). However, some 
of the treatment and control means are substantively different if not statistically significant. For 
example, the mean baseline math score for the treatment students in the restricted subsample is 0.52, 
compared to 0.33 for control students. This suggests that the experimental estimates for the 
restricted subsample may not be a good benchmark. We have nonetheless included the fixed effects 
analysis and its experimental benchmark because they were part of the original design, and we did 
not want to selectively omit these findings.  

The impact estimates for the restricted subsample are somewhat different from the impact 
estimates for the full sample. As shown in Table III.3, using the restricted subsample, we again find 
that students randomly selected to attend charter schools through the lottery have nearly identical 
average math test scores (0.49) as students in the control group (also 0.49). However, in contrast to 
the estimated null impact on reading based on the full sample, we estimate a negative, statistically 
significant effect of charter schools on reading test scores (-0.14). We also note that the test score 
levels are generally lower for the restricted subsample, which largely reflects the differences in 
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average achievement in sites where we were able to obtain prebaseline test scores for most students 
relative to sites where we were unable to obtain prebaseline test scores for any students. 

Table III.3. Estimates for Experimental Benchmarks, Restricted Subsample 

Regression-Adjusted Meansa Impact 

Treatment Control Estimateb SE p-Valuec 

Math Test Score 0.49 0.49 0.01 0.06 0.87 
Reading Test Score 0.38 0.52 -0.14 0.06 0.01* 
Note: The treatment and control group samples included 282 and 132 students, respectively, for 

math and 283 and 132 students, respectively, for reading. 

a Treatment and control means are regression-adjusted using the average characteristics of the combined 
treatment and matched comparison group samples. 

b The difference between treatment and control group mean outcomes may not equal the impact estimate 
due to rounding. 

c */** indicates that an impact is statistically significantly different from zero at the .05/.01 level, 
respectively, using a two-tailed t-test. 

SE = standard error. 
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IV. NONEXPERIMENTAL COMPARISON GROUP ANALYSES 

In this chapter, we discuss the motivation, implementation, and findings for our 
nonexperimental comparison group analyses. Nonexperimental analyses attempt to account for 
potential selection bias by controlling for observable characteristics that might be correlated with 
both the decision to participate in the program and the outcomes the program is intended to affect. 

In the context of school choice, there are numerous reasons a student (or a student’s parents) 
would choose to apply to a charter school. Higher-achieving students might be more motivated to 
seek out opportunities, making them more likely to apply than lower-achieving students; 
alternatively, lower-achieving students could be trying to find new schools at which they might have 
more success. More-motivated parents might be more likely than other parents to explore alternative 
educational opportunities for their children. For example, some students or parents might prefer 
schools that put more emphasis on the arts and less on core subjects such as math and reading, or 
schools that accommodate special instructional needs. Parents might prefer to send their children to 
schools that are close to their homes or, conversely, if they reside in disadvantaged neighborhoods, 
they might wish to send their children to schools farther away. 

If any of these factors is associated with both a student’s decision to apply to a charter school 
and his or her academic achievement, failure to account for it properly in the analysis could bias the 
nonexperimental impact estimates. Most nonexperimental studies have good measures of some 
confounding factors, such as a student’s prior achievement from standardized tests. For other 
factors, such as parents’ motivation or different academic priorities, we rarely have direct measures; 
for these factors, nonexperimental analyses generally assume that either the factor is encompassed 
by other available measures, such as baseline test scores or demographics, or that it does not affect 
either the outcome measure or the student’s decision to apply to charter school. Moreover, even if 
we observe all potential confounding factors, impact estimates from nonexperimental analyses are 
theoretically unbiased only if the functional relationship between the outcome measure, treatment 
status, and confounding factors is correctly specified. 

The present study covers four nonexperimental comparison group approaches, each of which 
can theoretically account for selection bias.14 The first approach uses a basic regression model to 
control for observable pre-intervention characteristics that might differ for the treatment and 
comparison groups. The second approach restricts the comparison group to the subset of students 
that look most similar to the treatment group. It uses an intuitive form of matching to identify all 
comparison students with the same specified characteristics as a given treatment student and then 
compares the outcomes of the two groups; we refer to this approach as exact matching. However, a 
well-known limitation of exact matching is that multidimensional baseline covariates severely restrict 
the number of treatment students that can be matched. Our third approach, propensity score 
matching (PSM), is an alternative matching strategy that addresses the dimensionality problem by 
first estimating the probability that a given student is in the treatment group—the propensity 
score—as a function of the available baseline characteristics. The propensity score is then used as a 
summary index on which treatment and comparison students can be matched. Our final approach is 

                                                 
14 We note that, though we treat these as separate approaches, several strategies can be combined in practice. 

Indeed, parts of our analysis combine regression with exact matching and with propensity score matching. 
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a student fixed effects or a difference-in-differences model that attempts to control for all time-
invariant, student-specific characteristics that might confound the estimated impact. The fixed 
effects model is useful in contexts in which there might be self-selection on unobserved factors, but 
those unobserved factors do not change from one time period to the next. 

As noted in Chapter I, a crucial consideration in replication studies is that the experimental and 
comparison group methods should estimate the same impact parameter. As described in Chapter 
III, a well-implemented experimental design cleanly identifies the intent-to-treat (ITT) estimate, so 
we likewise focus the nonexperimental analysis on that parameter. Conceptually, nonexperimental 
methods should still be valid for estimating an ITT if the treatment group includes 
nonparticipants—or if the comparison group includes some crossovers—and that is the approach 
we take here. To replicate the experimental ITT estimate, the comparison group approaches attempt 
to identify a set of comparison students for the full set of treatment students, regardless of whether 
those treatment students ultimately attended the charter school or some other school. 

A. Regression-Based Comparison Group Approach 

An ordinary least squares (OLS) regression is the simplest and perhaps most commonly used 
approach for estimating impacts in a nonexperimental study. In our regression model, the treatment 
group consists of students who were offered admission to charter schools through the school’s 
lottery; these students also make up the treatment group of the experimental approach. The 
comparison group includes the students who did not participate in the lottery but who were in the 
same traditional public schools (TPSs) and grades at baseline as the treatment students. The 
regression model then controls for any observed student-level characteristics that are believed to 
affect the student’s selection into the treatment group as well as his or her test scores. In our case, 
these characteristics include sex, race/ethnicity, free or reduced-price lunch (FRPL) eligibility, 
English-language leaner (ELL) status, and disability status (individualized education plan, or IEP), as 
well as baseline and prebaseline test scores for math and reading. 

The regression-based comparison group approach relies on two key assumptions in order for 
the estimator of the program’s impact to be unbiased. First, the regression-based approach assumes 
that all factors confounding the relationship between treatment group status and test scores are 
observed, measured, and included in the regression model; this is also referred to as the 
unconfoundedness assumption (Rosenbaum and Rubin 1983; Little and Rubin 2000). In practice, the 
unconfoundedness assumption is untestable. However, using baseline data that has prior 
achievement test scores and other observed potential confounding factors makes this assumption 
more plausible.  

The second assumption of a nonexperimental regression approach is that the functional 
relationships between all confounding factors and the outcome measures are specified correctly. 
This means that controlling only for the main effects of the confounding factor might not eliminate 
bias if the true relationship between the outcome and the confounding factor is nonlinear or 
involves an interaction of two or more variables (for example, sex and race/ethnicity). One potential 
limitation of the nonexperimental regression approach is that if the covariates for the treatment and 
comparison students do not span the same range of values, it might not be possible to correctly 
model the relationship between the covariates and the outcome measure. As can be seen in the left 
panel of Table IV.2 in Section B, for example, treatment students have appreciably higher average 
baseline and prebaseline test scores than do comparison students.  
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After identifying the potential confounding factors and obtaining data, the main challenge of 
implementing the regression-based comparison group design is to determine the functional form of 
the relationships between potential confounding factors and test scores. Researchers employ 
different strategies, but there is no consistent approach used in prior literature. Due to the number 
of covariates involved, it would have been problematic to include all of the higher-order terms and 
various interactions simultaneously. Thus, we developed our regression model in five steps: 

1. Main effects model. We began with a simple model that included the four baseline and 
prebaseline test scores and indicators for sex, race/ethnicity, FRPL status, ELL status, 
disability status, grade, and site. This model also included missing data indicators for the 
test scores, sex, and race/ethnicity.15 

2. Nonlinear pre-tests models. We fit four models, each testing whether a given pre-test 
had a quadratic relationship with a test score at follow-up, while controlling for the main 
effects of the other observed covariates specified in step 1. 

3. Simple interaction models. We fit a set of models, each testing whether an interaction 
between two confounding factors was statistically significant, while controlling for other 
observed covariates specified in step 1. The tested interactions included all possible two-
way interactions between the four baseline and prebaseline test scores and indicators for 
sex, race/ethnicity, FRPL status, ELL status, and disability status. 

4. Full model. Any higher-order terms found to be statistically significant in steps 2 or 3 
were then simultaneously added to the model in step 1 and again tested for statistical 
significance. 

5. Simplified “full” models. Any higher-order terms found to be insignificant in the 
previous step were dropped and a simplified model was estimated. This step was 
repeated until all remaining higher-order terms were statistically significant. 

We performed this model-building procedure separately for the mathematics and reading 
outcomes.16 Analogous to Equation (1), the final regression model took the following form: 

(2) α β ϕ θ ε= + + + +' ' ,i i i i iy T X S  

where yi  is the test score for student i at follow-up; Ti  is a binary indicator variable equal to 1 if the 
student was selected through the lottery to attend a charter school and 0 otherwise; X i  is a vector 
of student covariates, which includes baseline math and reading test scores, prebaseline math and 

                                                 
15 Among students who were missing one of the prebaseline test scores, most were missing the other prebaseline 

test score as well, which created colinearity problems. Furthermore, because few students were missing baseline test 
scores, including missing baseline test score indicators for both math and reading (plus the interactions between these 
variables and other covariates) created stability problems in the regression model. For these reasons, we included missing 
test score indicators for reading but not for math. Missing rates were low for other demographic variables, namely 
FRPL, ELL, and disability status; the missing value indicators also had colinearity issues and so were not included. 

16 All model-building statistical tests were performed at the more liberal 0.10 significance level. The models in the 
model-building steps did not include the indicator of treatment status to avoid influencing our decision about the 
functional forms for the covariates in the regression by their effect on the impact estimates. However, absent concerns 
about (consciously or subconsciously) biasing functional form decisions, the model-building procedure would ideally 
include the treatment indicator in the model.   
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reading test scores, sex, race/ethnicity, FRPL status, ELL status, disability status, and interactions 
between some of these variables as determined by the model-building procedure described earlier;17 
S i  is a vector of binary indicators for the student’s grade and site, which helps control for 
fundamental differences across grades and sites or between the test score measures used by each 
state; and ε i  is an error term. The parameter of interest in Equation (2) is β , which is the ITT 
estimate. 

In estimating Equation (2), we used sample weights for each treatment student that account for 
the probability of the student being selected into the treatment group in the experimental study. 
Within a given site, each comparison student was assigned an equal weight based on the total weight 
of the treatment students in his or her site divided by the number of comparison students in that site 
(see Appendix A for more detail on the construction of the weights). Because both treatment and 
comparison students within a site summed to the same total weight, the relative influence of each 
site on the overall impact estimate was proportional to the weighted sample size of the treatment 
group. This also ensured that a given site would have the same weight in both the experimental and 
the regression-based comparison group approaches and that any potential differences between 
estimated impacts could be attributable to the compared approaches themselves, rather than 
differences in the parameters they were estimating. 

Table IV.1 shows the estimated impacts on math and reading test scores using the regression-
based comparison group approach. After controlling for other observed factors that could influence 
student achievement, on average the treatment students performed better than the comparison 
students on the mathematics test (mean = 0.35 versus 0.28). Thus, we would conclude that being 
offered admission to the charter school resulted in a positive and statistically significant impact on 
students’ math achievement (impact = 0.06, p = 0.01). Similarly, after controlling for other 
covariates, on average the treatment students also performed significantly better than the 
comparison students on the reading test (mean = 0.28 versus 0.21, impact = 0.06, p = 0.01). By way 
of comparison, Bloom et al. (2008) found that annual middle school student achievement growth (in 
effect size units) was between 0.30 and 0.41 for math and between 0.23 and 0.32 for reading.  

  

                                                 
17 The regression model for math included two-way interactions of (1) baseline math test score with prebaseline 

math test score and sex; (2) baseline reading test score with prebaseline math test score, race/ethnicity, ELL status, and 
disability status; (3) prebaseline reading test score with FRPL status, disability status, and race/ethnicity; and (4) 
race/ethnicity and disability status. The regression model for reading included two-way interactions of (1) baseline math 
test score with prebaseline math test score and ELL status; (2) prebaseline math test score with race/ethnicity; (3) 
baseline reading score with itself (that is, a quadratic term), prebaseline reading test score, sex, race/ethnicity, and ELL 
status; (4) prebaseline reading score with FRPL status and ELL status; (5) race/ethnicity with sex and disability status; 
and (6) ELL status with sex and FRPL status. 
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Table IV.1. Estimated Impacts Using Regression-Based Comparison Group Approach 

Regression-Adjusted Meansa Impact 

Treatment Comparison Estimateb SE p-Valuec 

Math Test Score 0.35 0.28 0.06 0.02 0.01** 
Reading Test Score 0.28 0.21 0.06 0.03 0.01* 

Note: The treatment and comparison group samples included 629 and 20,335 students, 
respectively, for math and 630 and 20,099 students, respectively, for reading. 

a Treatment and comparison means are regression adjusted using the average characteristics of the 
combined treatment and matched comparison group samples. 

b The difference between treatment and comparison group mean outcomes might not equal the impact 
estimate due to rounding. 

c */** indicates that an impact is statistically significantly different from zero at the .05/.01 level, using a 
two-tailed t-test. 

SE = standard error. 

B. Exact Matching Approach 

A potential limitation of the regression model is that, even if we observe all confounding 
factors, we have no way of knowing whether we have fully and appropriately modeled the 
relationships between those factors and the outcome measures. This becomes a greater concern 
when the treatment and comparison groups have very different distributions of baseline 
characteristics (that is, limited common support). Statistical matching can overcome this limitation 
by restricting the analysis to the subset of the comparison group for which observable baseline 
characteristics are similar to the treatment group. If the distribution of baseline characteristics is 
similar for the treatment and comparison groups such that baseline characteristics are independent 
of treatment status among the matched sample, statistical modeling is less important for obtaining 
unbiased impact estimates. However, as with the regression model, matching approaches cannot 
account for any unobservable confounding factors. 

Our first matching approach is a simple, intuitively appealing process that seeks to match 
exactly each treatment student to one or more students in the comparison group. We base this 
approach loosely on the method used by the Stanford Center for Research on Education Outcomes 
(CREDO) in its 2009 study of charter school impacts across 16 states, although our implementation 
is somewhat different.18 For each treatment student, we search for one or more comparison group 
students who are in the same grade, attended one of the feeder schools in the same site at baseline, 
and exactly match on a defined set of baseline characteristics. In other words, we restricted the pool 
of potential comparison group students to be matched to a given treatment student to those in the 
same site as the treatment group student, and also to those who matched exactly on this small set of 
characteristics. Most of the characteristics we consider are categorical, including sex; race/ethnicity; 
and FRPL, ELL, and IEP status. For these variables, we look for comparison students who are in 

                                                 
18 The CREDO study differs from ours in three general ways. First, our analysis sample is restricted to students 

who were in TPSs at baseline, whereas CREDO’s analysis sample included students who could have been in other 
schools (including the charter schools being evaluated) that no comparison students attended at baseline. Second, the 
CREDO analysis matched students on baseline grade, sex, race/ethnicity, FRPL status, ELL status, special education 
status, and one baseline year of data for each subject separately (that is, the study did not include baseline reading scores 
in determining matches for the math analysis sample, and vice versa). 
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the same category for each measure. Test scores are continuous measures, so instead of matching to 
comparison students with the exact same score, we look for other students within 0.10 standard 
deviations.19 If one or more baseline covariates are missing for a given treatment student, those 
covariates are ignored in finding matches for that student. 

The matched comparison students are assigned the analysis weight for the treatment students to 
whom they are matched. In other words, a treatment student and his or her matched comparison(s) 
have the same weighted representation within the treatment and comparison samples, respectively. 
A given treatment student could potentially have many comparison students who are exact matches 
on the specified characteristics; when this happens, the treatment student’s weight is divided into 
even-weight shares among the matched comparison students, so that collectively the matched 
comparison students have the same weight as the treatment student. All matches are done with 
replacement, so a given comparison student could also be matched to many treatment students. In 
these instances, the comparison student’s analysis weight equals the sum of the weights (or weight 
shares) for all treatment students to whom he or she is matched. 

                                                 
19 We adopted the same definition of test score equivalence as the CREDO study. Among other criticisms of the 

CREDO study, Hoxby (2009) argues that 0.10 is too large a bandwidth to be considered a test score match. As a 
sensitivity check, we used a bandwidth of 0.05 instead. This change decreased the match rate for our treatment group by 
15 percentage points (86 versus 71 percent) compared with the specification for which we report results. The impact 
estimates were very similar with either bandwidth. 



24 

Table IV.2. Baseline Covariates for the Full Nonexperimental Sample and the Exact Matched Sample: Math 

Full Nonexperimental Sample Sample Used for Exact Matching Analysis 

Treatment Group 
(N = 629) 

Comparison Group 
(N = 20,335) 

p-Value of 
Differencea 

Treatment Group 
(N = 515) 

Comparison Group 
(N = 5,719) 

p-Value of 
Difference 

Prior Test Scores Mean SD Mean SD Mean SD Mean SD 
Baseline Math 0.52 0.96 0.02 0.98 0.00** 0.48 0.89 0.48 0.89 0.99 
Prebaseline Math 0.50 0.98 0.12 0.99 0.00** 0.42 0.93 0.47 0.93 0.49 
Baseline Reading 0.43 0.94 -0.01 0.96 0.00** 0.38 0.86 0.38 0.87 0.96 
Prebaseline Reading 0.47 0.98 0.03 0.97 0.00** 0.39 0.95 0.38 0.92 0.94 
Other Baseline Covariates Percentage Percentage Percentage Percentage 
Grade  0.00**  1.00 

4th 37 31 35 35 
5th 55 54 53 53 
6th 9 15 12 12 

Sex  0.15  0.41 
Female 47 50 46 50 
Male 53 50 54 50 

Race/Ethnicity  0.00**  0.00** 
Black, Non-Hispanic  12 22 13 18 
Hispanic 19 26 20 22 
White/Other 69 53 67 59 

bFRPL-Eligible   0.00**  0.01* 
Yes 33 47 33 40 
No 67 53 67 60 

IEPb  0.00**  0.00** 
Yes 26 19 27 15 
No 74 81 73 85 

English-Language Learner  0.02*  0.68 
Yes 3 5 3 3 
No 97 95 97 97 

Missing Value Indicatorsc Percentage Percentage  Percentage Percentage  
Baseline Math 3 0 0.00** 0 0 1.00 
Prebaseline Math 53 56 0.20 55 54 0.63 
Baseline Reading 4 4 1.00 1 1 0.68 
Prebaseline Reading 53 56 0.21 56 54 0.55 
Sex 36 33 0.18 35 33 0.44 
Race/Ethnicity 8 5 0.00** 9 4 0.00** 

Source: Charter School Study (Gleason et al. 2010) and district achievement and demographic data. 

Note: As described in the text, the specification used for the exact matching impact estimates reported in the text only matches on a subset of covariates, which are 
indicated in bold italics. This table presents descriptive statistics based on weighted estimates of means, standard deviations, and percentages. To be included in 
the analysis a treatment or comparison student must have a score for the outcome and at least one (of the two) baseline test scores. Percentages in this table 
might not add to 100 due to rounding. All means are based on nonmissing values of the covariate.  

a Reported p-values for test scores and missing data indicators are from two-tailed t-tests. Reported p-values for categorical variables are from chi-square tests. 
b FRPL indicates free or reduced-priced lunch status; IEP is individualized education plan, an indicator of a student with mental or physical disabilities. 
c High percentages of missing values for some of the covariates are due to the lack of these data across one or more of the sites. 

*/**Significantly different from zero at the .05/.01 level. 

SD = standard deviation. 

N = sample size. 
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A challenge of exact matching is that the more characteristics are used in the matching process, 
the harder it is to find exact matches on all of the dimensions. We illustrate this tension in Table 
IV.3, which presents the percentage of treatment students that can be matched for different 
combinations of baseline variables.  

We conduct matching separately for math and reading test scores, though the findings are 
almost identical, and all of our matches are done within the same grade and among the feeder 
schools associated with the charter school. We also limited our samples for math and reading to 
students who have nonmissing values for the baseline test score for the corresponding subject. 
When we match only on the baseline test for the corresponding subject, we are able to match nearly 
all of the treatment students (row 1).20 However, when we match on baseline test scores for both 
math and reading, we can no longer match 14 percent of the treatment students (row 2). If we 
match on all four pre-intervention test scores available in our data (baseline and prebaseline test 
scores for math and reading), we can identify matches for only 52 percent of the sample (row 4). If 
we instead match only on the same-subject baseline test score and all demographic measures 
available to us, we can match 86 to 87 percent of the treatment students (row 7). When we match on 
all baseline measures—at which point the matches can be thought of as exact matches on all 
observable characteristics—we are able to match only one of every four treatment students (row 8).  

Table IV.3. Percentage of Matched Treatment Students Using Alternative Matching Criteria 

Percentage of Treatment Students with at 
Least One Match 

Math Test Reading Test 

(1) Baseline Test, Same Subject Only 100 99 
(2) Baseline Tests, Both Subjects  86 86 
(3) Baseline Tests (Both Subjects), Sex, Race 71 71 
(4) Baseline and Prebaseline Tests, Both Subjects 52 51 
(5) Same Subject Baseline Test and FRPL 99 99 
(6) Same Subject Baseline Test, FRPL, ELL, IEP 94 94 
(7) Same Subject Baseline Test, FRPL, ELL, IEP, Gender, Race 86 87 
(8) All Baseline and Prebaseline Variables Listed Above 25 25 
Note: All students were matched within site. All test scores are matched within 0.10 standard 

deviations. If a treatment student is missing data for a given variable, that variable was 
ignored when identifying matches for that student. FRPL designates free or reduced-price 
lunch eligibility status, ELL is English-language learner status, and IEP is an indicator of 
students’ disability status. Percentages are among students with nonmissing values for the 
baseline subject test score considered, that is, the math sample requires nonmissing baseline 
math test scores, and likewise for reading. Row 2 (in bold italics) represents the match 
criteria used to estimate the impact of the offer to attend charter schools using exact 
matching in this replication study. 

 
Considering these trade-offs, we restrict the set of covariates used to match students and match 

only on the two baseline test scores (that is, the specification italicized in row 2 of Table IV.3). Both 
math and reading baseline test scores are highly correlated with treatment status and with first-year 
test scores; furthermore, limiting the number of variables used in the matching enables us to retain 

                                                 
20 These percentages do not include students who had missing values for the corresponding baseline test score. 

Twenty-nine students were excluded from the math analysis sample because they lacked baseline math scores, and 34 
students were excluded from the reading sample because they lacked baseline reading test scores. 
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most of the treatment group (86 percent of those with baseline test scores for the corresponding 
subject, and 82 percent of our original sample) for our analysis.  

Of course, the trade-off is that the characteristics not used in matching are likely to differ 
between matched treatment and comparison students, which could bias the impact estimates.21 
Indeed, as reported in the right panel of Table IV.2, many of the demographic characteristics that 
are different for the treatment group relative to the full comparison group remain statistically 
significantly different across groups for the matched sample used to estimate impacts on math. 
(There were similar differences observed between the treatment and comparison samples used for 
the analysis of reading test scores. See Appendix B for details.) However, baseline test scores and 
even prebaseline test scores (which were not used in our exact matching specification) are very 
similar for the treatment and matched comparison groups, in contrast to the stark differences for the 
unrestricted pool of comparison students. 

Our impact estimates for the exact matching approach are based on a sample restricted to the 
treatment students for whom we found at least one match and the matched comparison students, 
where treatment and comparison students are weighted as described earlier. We also employ a 
regression model to improve statistical precision and control for the differences in baseline 
characteristics illustrated in Table IV.2; the regression model is the same as the regression approach 
employed in Section IV.A. We bootstrap the standard errors to account for variability introduced by 
the matching process.22 

Using the exact matching approach, estimated impacts are positive but not statistically 
significant for both math and reading test scores in the first year (Table IV.5). The estimated impact 

                                                 
21 This limitation of exact matching—an inability to both identify matches for all students in the treatment group 

and use the full set of covariates in the matching process—is addressed by the propensity score matching approach 
described in the next section. With propensity score matching, we were able to use the full set of relevant covariates in 
the matching process and find matching for 88 percent of treatment group students, similar to the match rate for the 
exact matching approach but using many more covariates. The limitation of propensity score matching, however, is that 
we cannot guarantee exact matches on all the covariates included in the matching process; only that there are close 
matches on the estimated propensity score itself (which summarizes the covariates). This is not a problem when the 
estimated propensity score closely approximates the true propensity score (which is not known) but could be 
problematic in practice if the propensity score model is not specified correctly. 

22 Although our sample is stratified by site, most sites are too small for bootstrapping to be valid. Instead, we 
stratify our bootstrapping process by state. We also combine two small sites that are the only sites in their respective 
states. Stratifying by state rather than by site introduces additional variation into the bootstrapped standard errors; that 
is, they are conservative. However, each iteration of the bootstrap still conducts matching within a site and controls for 
site in our regression models. 
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on math is 0.02 and not statistically significant (p = 0.56). The estimated impact on reading is 0.04 
and not statistically significant at conventional levels (p = 0.17).23 

Table IV.4. Estimated Impacts Using Exact Matching Approach 

Regression-Adjusted Meansa Impact 

Treatment Comparison Estimateb SEc p-Valued 

Math Test Score 0.52 0.50 0.02 0.03 0.56 
Reading Test Score 0.44 0.40 0.04 0.03 0.17 

Note: The treatment and comparison group samples included 515 and 5,719 students, respectively, 
for math and 510 and 4,539 students, respectively, for reading. 

a Treatment and comparison means are regression adjusted using the average characteristics of the 
combined treatment and matched comparison group samples. 

b The difference between treatment and comparison group mean outcomes might not equal the impact 
estimate due to rounding. 

c Standard errors are bootstrapped using 1,000 iterations. 

d */** indicates that an impact is statistically significantly different from zero at the .05/.01 level, using a 
two-tailed t-test. 

SE = standard error. 

C. Propensity Score Matching (PSM) Approach 

The central concept of PSM is to estimate the probability of being in the treatment group for 
both the treatment group and the possible comparison group students based on the observed data. 
This probability is known as the propensity score. Theoretically, appropriately controlling for the 
propensity score in the analysis would then result in an unbiased estimator of the program impact 
(Rosenbaum and Rubin 1983). Analytically, the propensity score is incorporated into the impact 
estimation in a variety of ways, such as including it as a covariate in the regression model, weighting, 
or matching. Imbens and Wooldridge (2009) persuasively argue that the first two approaches are 
practically challenging, whereas matching is intuitive and is appropriate when the number of 
potential comparisons is much larger than the number of treatment units, as in our case. 
Furthermore, matching is more commonly used in practice. Hence, we followed Imbens and 
Wooldridge in focusing on estimators that couple matching on the propensity score with regression 
adjustment, which protects against misspecification in either model. We also match on the 
propensity score itself, which is most common in practice, though researchers have also matched on 
transformations of the propensity score. For example, Heckman and Todd (2009) demonstrate that 
matching on the odds ratio (or log odds ratio) of the propensity score could be used even if the 
population weights are not known, and consequently, the propensity score is not consistently 
estimated. Another approach is to match on the index used to estimate the propensity score; as 
discussed by Lechner (1999), matching on the index may be preferable in contexts where many 
observations have estimated propensity scores near 0 or 1. 

                                                 
23 The regression-adjusted treatment and comparison means are somewhat higher using the exact matching 

approach than using the regression approach. This is because, as we did with the regression approach, we calculate the 
regression-adjusted means as if both the treatment and comparison group have the average characteristics of the full 
analysis sample. For exact matching, the analysis sample is somewhat higher achieving, on average, because the 
comparison group is restricted to students with similar pre-intervention achievement as the treatment group. 
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In our PSM model, the treatment group again consisted of students who were offered an 
opportunity to move from traditional public schools to charter schools via the charter schools’ 
lotteries, with a comparison group selected from among students who were not offered admission to 
the charter schools and who did not participate in the lotteries. In this approach, however, the 
comparison group was carefully selected from a large set of potential comparison students by 
retaining only those comparison students whose estimated propensity scores are similar to those of 
treatment group students. 

As discussed earlier, this approach can yield unbiased impact estimates if the comparison group 
closely matches the treatment group on the observed baseline characteristics and these 
characteristics fully capture the relevant differences between the treatment and comparison groups 
(that is, the unconfoundedness assumption holds). To achieve covariate balance, it is sufficient to 
match on the true propensity score. The main challenge is to model correctly the relationship 
between the covariates and the probability of being in the treatment group, so that the estimated 
propensity score is close to the true propensity score. 

The first step for the PSM approach is to estimate a propensity score for each student in the 
sample. To determine the appropriate propensity score model, we used a stepwise model selection 
procedure for the logistic regression. This procedure starts with an intercept-only model and, at each 
step, either adds or subtracts a term from a specified set of potential covariates in order to optimize 
model fit to the data. Our specified set consisted of 51 potential covariates: the 9 observed baseline 
covariates, 40 two-way interactions of these covariates, and grade and site indicators. The stepwise 
procedure narrowed this set to 23 baseline covariates and interaction terms and resulted in a model 
with good fit to the data (Hosmer and Lemeshow Goodness-of-Fit test p-value = 0.15).24 We then 
slightly modified this model by adding a few terms to ensure that the model was statistically sound.25 
The final propensity model included the four pre-test scores, indicators for sex, race/ethnicity, 
FRPL status, ELL status, disability status, grade, and site and 13 of the two-way interactions 
between these covariates. We then used this model to estimate a predicted propensity score for each 
student in the sample.26 

                                                 
24 The Hosmer and Lemeshow Goodness-of-Fit statistic is constructed by first dividing the observations into 

deciles based on their predicted probabilities and then calculating the chi-square statistic testing whether the distributions 
of predicted and actual frequencies across deciles are the same. Smaller p-values indicate worse model fits. For 
comparison, we also used forward and backward model selection procedures. The former starts with an intercept-only 
model and adds (but does not subtract) terms at each step, whereas the latter starts with a model including all of the 
potential terms and subtracts (but does not add) a term at each step. These procedures came up with similar but slightly 
larger models. Hosmer and Lemeshow Goodness-of-Fit test p-values for the final models in the forward and backward 
procedures were 0.09 (28 terms) and 0.17 (31 terms), respectively. 

25 Due to the use of the missing data indicators for the baseline and prebaseline test scores, in some cases the 
stepwise regression procedure ended up keeping an interaction of a covariate with a test score while dropping a 
corresponding interaction with a missing data indicator for that test score and vice versa. To make the final propensity 
model statistically sound, we added these terms back in. 

26 We also considered including site-level interactions in the propensity score model to account for the possibility 
that there may be different determinants of treatment status across sites. As a practical matter, this becomes infeasible in 
finite samples with many candidate covariates. Saturating the model with site interactions with these covariates would 
cause instabilities in the propensity score model unless we scaled back the covariates considered for the model, especially 
because several sites are quite small. As will be shown later in the paper, the matched comparison group is very similar to 
the treatment group, suggesting that restricting the propensity score model to be the same across sites did not 
compromise covariate balance for the matched sample.  
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After estimating the propensity scores, the next step is to select a matched comparison group. 
Perhaps the most intuitive analytical approach is to match each treatment student to a single 
comparison student with the closest propensity score (that is, the nearest neighbor match). Using 
more matches for each observation, however, can improve the statistical precision by increasing the 
total sample size, though it is crucial that the quality of the matches is not compromised when the 
quantity increases. For this reason, we implemented caliper matching, whereby a given treatment 
student is matched to all comparison students with estimated propensity scores within a specified 
range (or caliper), rather than merely selecting a specified number of nearest neighbors. Selecting a 
small caliper minimizes observable differences (and by extension, bias) between matched units, but 
also results in many unmatched treatment students. To balance the conflicting demands of finding 
the best possible matches (that is, reducing bias) and matching the largest proportion of treatment 
students (that is, improving external validity), we used an “adaptive caliper” approach that 
sequentially considers nine specified calipers for each treatment student. The smallest caliper would 
identify comparison matches with estimated propensity scores that were within 10-5 of a given 
treatment student’s propensity score. The largest caliper would match the treatment student to 
comparison student propensity scores within 0.025 of the treatment student’s. Starting with the 
smallest range (caliper), we then checked for matches. If a treatment student had between 2 and 30 
potential matches, all of these comparison students were identified as the matches for the given 
treatment student. If the number of potential matches exceeded 30, we identified the 30 comparison 
students with the closest propensity score (that is, the best-matched students) as the matches to this 
treatment student. This cap of 30 comparison students per treatment student helped to avoid 
creating design effects due to substantial variation in weights. If we did not find at least two 
matches, we increased the caliper to the next level and tried again. If no matches were found at the 
maximum allowable caliper (that is, 0.025), we excluded the treatment student from further PSM-
based analyses. 

Another consideration in selecting a matched sample is whether to match with or without 
replacement; that is, whether to allow a given student from the comparison group to be matched to 
multiple treatment students and then to weight each comparison student by the number of 
treatment group matches. Matching with replacement reduces bias by allowing for closer matches, 
but it also increases standard errors because of the design effects from weighting. However, allowing 
each treatment student to be (potentially) matched to multiple comparison students might 
counteract the precision losses, such that we minimize potential bias while maintaining statistical 
precision. The matching procedure was implemented separately for each site. Similar to the exact 
matching approach, the matched comparison students were assigned the analysis weight (or a 
portion of the weight) for the treatment students to whom they were matched. 

Our matching approach yielded matches for 88 percent of treatment group students (551 of the 
629 for math and 552 of the 630 for reading), with an average of three comparison group students 
matched to each treatment student. Furthermore, although the original treatment and comparison 
groups differed on most of the observed covariates, the matched treatment and comparison groups 
showed baseline equivalence on all baseline covariates (Table IV.5). The analysis sample for reading 
differs slightly from the analysis sample for math, but the matched samples exhibit similar balance; 
these results are reported in Appendix B. 

After constructing the matched comparison group, we estimated impacts using the same 
regression model described earlier in this chapter, with the only difference being the observations 
and the corresponding weights used in the estimation. If the propensity score model is correctly 
specified, then regression adjustment is theoretically unnecessary for PSM to yield unbiased 
estimates. However, combining matching with regression helps with robustness to the parametric 
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model misspecifications in either the propensity score model or the regression model used to 
estimate impacts (Imbens and Wooldridge 2009). Similar to the exact matching approach, to account 
for the uncertainty due to the matching process, we used bootstrapping with 1,000 iterations to 
estimate the standard errors for the PSM approach.27 Each bootstrap iteration involved drawing a 
stratified random sample (with replacement), estimating propensity scores for each sample member 
based on the propensity model, selecting a matched comparison group, and estimating an impact. 
The standard errors for the PSM impact estimator were then estimated using the standard deviation 
of the impact estimates across the 1,000 bootstrapped iterations. 

                                                 
27 Abadie and Imbens (2008) demonstrate that, with nearest neighbor matching and a fixed number of matches per 

treatment unit, bootstrapping does not yield valid statistical inference for PSM. However, when the number of matches 
increases with the sample size, as is the case with caliper matching, bootstrapping provides correct standard errors. 



Table IV.5. Baseline Covariates for the Full Nonexperimental Sample and the Propensity Score Matched Sample: Math 

Full Nonexperimental Sample Sample Used for Propensity Score Matching Analysis 

Treatment Group 
(N = 629) 

Comparison Group 
(N = 20,335) 

p-Value of 
Differencea 

Treatment Group 
(N = 551) 

Comparison Group 
(N = 1,916) 

p-Value of 
Difference 

Prior Test Scores Mean SD Mean SD Mean SD Mean SD 
Baseline Math 0.52 0.96 0.02 0.98 0.00** 0.52 0.96 0.50 0.95 0.83 
Prebaseline Math 0.50 0.98 0.12 0.99 0.00** 0.46 0.98 0.36 0.98 0.17 
Baseline Reading 0.43 0.94 -0.01 0.96 0.00** 0.42 0.94 0.42 0.96 0.98 
Prebaseline Reading 0.47 0.98 0.03 0.97 0.00** 0.42 0.98 0.40 1.02 0.86 

31 

bFRPL-Eligible   0.00**  0.68 
Yes 33 47 33 34 
No 67 53 67 66 

IEPc   0.00**   0.67 
Yes 26 19  25 26 
No 74 81  75 74 

English-Language Learner   0.02*   0.62 
Yes 3 5  2 3  
No 97 95  98 97  

Missing Value Indicatorsc Percentage Percentage  Percentage Percentage  
Baseline Math 3 0 0.00** 1 0 0.27 
Prebaseline Math 53 56 0.20 54 53 0.94 
Baseline Reading 4 4 1.00 2 1 0.79 
Prebaseline Reading 53 56 0.21 54 54 0.93 
Sex 36 33 0.18 33 33 0.92 
Race/Ethnicity 8 5 0.00** 5 4 0.76 

Other Baseline Covariates Percentage Percentage Percentage Percentage 
Grade  0.00**  0.98 

4th 37 31  38 38  
5th 55 54  52 52  
6th 9 15  10 10  

Sex  0.15  0.98 
Female 47 50  47 48  
Male 53 50  53 52  

Race/Ethnicity  0.00**  0.99 
Black, Non-Hispanic 12 22  12 12  
Hispanic 19 26  18 18  
White/Other 69 53  69 70  

Source: Charter School Study (Gleason et al. 2010) and district achievement and demographic data. 

Note: This table presents descriptive statistics based on weighted estimates of means, standard deviations, and percentages. To be included in the analysis a treatment 
or comparison student must have a score for the outcome and at least one (of the two) baseline test scores. Percentages in this table might not add to 100 due to 
rounding. 

a Reported p-values for test scores and missing data indicators are from two-tailed t-tests. Reported p-values for categorical variables are from chi-square tests. 

b FRPL, free or reduced-priced lunch status, is often used by educational researchers as an indicator of student’s poverty status; IEP, individualized education plan, is used as an 
indicator of a student with mental or physical disabilities. 

c High percentages of missing values for some of the covariates are due to the lack of these data across one or more of the sites. 

*/**Significantly different from zero at the .05/.01 level. 

SD = standard deviation. 

N = sample size. 
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Using PSM we find a positive but statistically insignificant impact of being offered admission to 
a charter school on students’ mathematics and reading achievement (Table IV.6). On average, the 
treatment students performed better than the comparison students on the math test (mean = 0.54 
versus 0.49), but the estimated impact of being offered charter school admission on math 
achievement test scores is not statistically significant (impact = 0.05, p-value = 0.08). Similarly, the 
estimated impact on reading test scores is positive but not statistically significant (impact = 0.05, p = 
0.11).  

Table IV.6. Estimated Impacts Using Propensity Score Matching Approach 

Regression-Adjusted Meansa Impact 

Treatment Comparison Estimateb SEc p-Valued 

Math Test Score 0.54 0.49 0.05 0.03 0.08 
Reading Test Score 0.47 0.42 0.05 0.03 0.11 
Note: The treatment and comparison group samples included 551 and 1,916 students, respectively, 

for math and 552 and 1,898 students, respectively, for reading. 

a Treatment and comparison means are regression adjusted using the average characteristics of the 
combined treatment and matched comparison group samples. 

b The difference between treatment and comparison group mean outcomes might not equal the impact 
estimate due to rounding. 

c Standard errors are bootstrapped using 1,000 iterations. 

d */** indicates that an impact is statistically significantly different from zero at the.05/.01 level, using a 
two-tailed t-test. 

SE = standard error. 

D. Fixed Effects Approach 

A fixed effects model is commonly used in nonexperimental studies in which there might be 
self-selection on unobserved factors, but those unobserved factors are not believed to change from 
one time period to the next. In the charter school literature, fixed effects models are typically applied 
in contexts in which students move back and forth between charter and TPSs at different points in 
time (Zimmer et al. 2009; Booker et al. 2007; Bifulco and Ladd 2006; Hanushek et al. 2005); in such 
contexts, the simple OLS model in Equation (2) is not straightforward to estimate. The model that is 
estimated in this approach usually treats test score gains as the outcome rather than test score levels, 
though the causal quantity that is estimated is the same.28 The identification strategy in this approach 
compares the average change in annual test score gains between individuals whose treatment status 
changes and those whose treatment status does not change. In these models, the charter school 
students essentially serve as their own controls, with the gains in test scores they experienced while 
in charter schools compared with the gains they experienced while in TPSs.  

Students who remain in traditional public schools throughout the entire study period are also 
used in the estimation, in order to separate any changes to test scores that would have occurred over 
this period independent of enrollment in charter schools. Thus, the full sample would include all 
students who began in traditional public schools and were offered admission to a study charter 

                                                 
28 The gains model requires additional assumptions but conceivably removes some biases present in the levels 

model. See Bifulco and Ladd (2006) for a discussion. 
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school, as well as other students in the same (initial) public schools and grades in those sites. 
However, all students included in the analyses must have observed test scores for at least three 
points in time—that is, prebaseline, baseline, and follow-up—in order to have pre- and post-
intervention measures of test score gains. This requirement means that the study sample for the 
fixed effects model is limited to half the size of that used in the other comparison group analyses. 

Conceptually, this fixed effects model is similar to a regression model that controls for pretest 
scores and other covariates, but mechanically the two models differ both in the estimation approach 
and, potentially, the estimates they produce. To estimate the fixed effects model we used the 
following regression equation: 

(3) ( ) ( ) α β ε− − − = + +, , , - , ,post i base i base i pre base i i iy y y y T  

where y post ,i , ybase ,i , and y pre - ,base i  are the test score for student i at follow-up, baseline, and 

prebaseline, respectively; Ti  is a binary indicator variable equal to 1 if the student was selected 
through the lottery to attend a charter school and 0 otherwise; and ε i  is an error term. The 

parameter of interest in Equation (3) is β , which is the ITT estimate. The other control variables 
used in the regression model in the first section of this chapter are assumed to have a constant effect 
on test scores (or test score gains), so they difference out in this formulation. 

As with the other analyses, in estimating Equation (3) we used sample weights for each 
treatment student that account for the probability of the student being selected into the treatment 
group in the experimental study. Within a given site, each comparison student was assigned an equal 
weight based on the total weight of the treatment students in their site divided by the number of 
comparison students in that site. 

The fixed effects approach is not necessarily the solution to the assumptions that can haunt the 
other three methods. This approach essentially replaces the unconfoundedness and the functional 
form assumptions with a different set of assumptions. Specifically, fixed effects approaches assume 
that, had the charter school students stayed in the TPS, the change in their rate of achievement 
growth would have been the same as students who remain in the TPS throughout the entire period. 
Additionally, by rearranging the terms in Equation (3) and comparing the model with Equation (2), 
it can be seen that the fixed effects model imposes the implicit constraint that the coefficient on the 
baseline test score is 2 and the coefficient on the pre-baseline test score is –1. The intuition for these 
assumptions is that, holding all time invariant factors constant, a student’s standardized test score in 
one year should be an unbiased estimate of his or her standardized test score in the following year 
(relative to other students). Despite these stronger assumptions, we nevertheless test fixed effects 
models because, as described above, they are used frequently in the literature. 

Using the fixed effects approach we find that an offer to attend a charter school led to lower 
gains in math and reading test scores, but this estimated impact was small and not statistically 
significant (Table IV.7). On average, the treatment group’s math test scores were 0.38 compared 
with 0.42 for the comparison group. The average test scores for reading are lower overall—0.30 for 
the treatment group and 0.33 for the comparison group—but the difference is similar. It bears 
noting that, because the sample sizes are less than half of the sample size for the other analyses, the 
standard errors are correspondingly larger—more than twice the standard errors of the regression 
approach. Therefore, the fixed effects analysis, the corresponding experimental benchmark, and the 
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comparison between them have less statistical precision than do our methods that use our full 
sample. 

Table IV.7. Estimated Impacts Using Fixed Effects Approach 

Estimated Meansa Impact 

Treatment Comparison Estimateb SE p-Valuec 

Math Test Score 0.38 0.43 -0.04 0.06 0.44 
Reading Test Score 0.30 0.33 -0.04 0.07 0.60 

Note: The treatment and comparison group samples included 282 and 8,666 students, respectively, 
for math and 283 and 8,688 students, respectively, for reading. 

a To calculate means for the treatment and comparison groups, we first calculate means of the first follow-
up test score for the analysis sample, including both groups. We then net out the impact estimate (that is, 
subtract the proportion of treatment group students times the impact estimate) to calculate the mean for 
the comparison group, and add the impact estimate to get the mean for the treatment group. 
Conceptually, the calculated means thus treat each group as if it has the characteristics of the full sample, 
with the only difference being treatment status. 

b The difference between treatment and comparison group mean outcomes might not equal the impact 
estimate due to rounding. 

c */** indicates that an impact is statistically significantly different from zero at the .05/.01 level, using a 
two-tailed t-test. 

SE = standard error. 
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V. COMPARING EXPERIMENTAL AND NONEXPERIMENTAL ESTIMATES 

In this chapter we compare the estimated charter school impacts from each of the 
nonexperimental analyses presented in Chapter IV with the experimental benchmark presented in 
Chapter III. We first describe our criteria for determining whether impact estimates for a given 
nonexperimental approach match the experimental benchmark and present the findings from these 
comparisons. We then explore the sensitivity of our conclusions to different specifications of the 
nonexperimental analyses. 

A. Do the Nonexperimental Approaches Replicate the Experimental 
Findings? 

We use two criteria to determine whether a given nonexperimental impact estimate replicates 
the experimental benchmark. The first criterion is to consider whether the conclusion that would be 
drawn from its impact estimate is the same. Specifically, we examine whether the basic magnitude 
and sign of the estimates are comparable and whether the statistical significance (or insignificance) is 
the same. The second criterion is whether the nonexperimental impact estimate is statistically 
different from the experimental benchmark.  

Criterion 1: Do the nonexperimental estimates lead to the same policy conclusion as the 
experimental benchmark? The impact estimates on math test scores for our experimental 
benchmark (from Chapter III) and each of our nonexperimental approaches (from Chapter IV) are 
summarized in Table V.1. The experimental benchmark estimate is -0.01 and statistically 
insignificant. In contrast, the impact estimate for the nonexperimental regression approach is 
positive and statistically significant, though the magnitude is relatively small (0.06). Both matching 
approaches yield impact estimates closer to the experimental benchmark of -0.01, and neither is 
statistically significant, though the propensity score estimates approach statistical significance. As 
discussed in Chapter III, we use a different experimental benchmark for the fixed effects model 
because of the differing data requirements for the fixed effects gains model. Both the fixed effects 
impact estimate and its experimental benchmark are insignificantly different from zero. 

Most of the findings are similar when we compare the impact estimates for reading test scores 
(Table V.2). The regression, exact matching, and propensity score matching models perform 
similarly when either reading or math is the outcome. Compared with the experimental impact of 
0.00, the regression yields a positive and statistically significant impact estimate, though its 
magnitude is small (0.06). Both exact matching and propensity score matching approaches yield 
positive but statistically insignificant impact estimates. The most notable difference is for the fixed 
effects model. Whereas the experimental benchmark for the fixed effects model is substantial, 
negative, and statistically significant (-0.14), the fixed effects estimate of the impact on reading test 
scores is small and statistically insignificant (-0.04), though as discussed previously, the fixed effects 
sample size is small, and the impact estimates for it and its experimental benchmark are less precise. 

Criterion 2: Is the nonexperimental estimate statistically different from the experimental 
benchmark? These simple comparisons do not tell us whether any observed differences are due to 
chance or should be considered statistically meaningful. Moreover, the conclusions we draw could 
be influenced by differences in precision for the nonexperimental and experimental estimates, 
especially for the nonexperimental regression model, where the sample size is large. However, we 
note that the impacts we estimated with the nonexperimental regression would be significant even if 
its standard errors were of the same magnitude as the matching models.  
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Hence, our second criterion is whether the nonexperimental and experimental impact estimates 
are statistically different from each other. Because the treatment groups used in the nonexperimental 
and experimental analyses largely but not completely overlap, the estimates are not statistically 
independent and we must account for this covariance in order to test for significant differences 
between the nonexperimental estimates and the experimental benchmarks. We use bootstrapping to 
accomplish this. In each iteration of the bootstrap, we recalculate the experimental estimates and the 
nonexperimental comparison group estimates—including the full matching process for the 
propensity score and exact matching approaches—and then the difference between the two.29 The 
standard deviation of the differences estimated in those iterations serves as an estimated standard 
error of the difference between the comparison group and experimental estimates, and this standard 
error can be used for statistical inference. 

Table V.1. Comparing Experimental Benchmark and Nonexperimental Estimate for Math 

Models Using Restricted 
Analysis Subsample Models Using Full Analysis Sample 

Propensity 
Score 

Matching 
Experimental 
Benchmark 

OLS 
Regression 

Exact 
Matching 

Experimental 
Benchmark 

Fixed 
Effects 

Estimated Impact 
-0.01 
(0.04)

0.06** 
 (0.02) 

0.02 
(0.03) 

0.05 
(0.03) 

0.01 
(0.06) 

-0.04 
(0.06) 

Same Policy Conclusion? -- No Yes Yes -- Yes 

Difference from Exp. 
Benchmark 

-- 0.07*
(0.03) 

0.02
(0.04) 

0.06
(0.04) 

-- -0.05 
(0.06) 

p-Value of Difference -- 0.03 0.57 0.14 -- 0.40 

Treatment Sample 629 629 515 551 282 282 

Control/Comparison 
Sample 

295 20,335 5,719 1,916 132 8,666 

Source: Charter School Study (Gleason et al. 2010) and district achievement and demographic data. 

Note: Standard errors for each impact estimate and difference are in parentheses. Standard errors 
for exact matching and propensity score matching impact estimates use bootstrapping as 
described in Chapter IV. Standard errors for the difference between the nonexperimental and 
experimental impact estimates also use bootstrapping as described in this chapter. 

*/** Significantly different from zero at the .05/.01 level. 

OLS = ordinary least squares. 

When we consider whether the observed differences in impact estimates are statistically 
significant (Criterion 2), the findings are similar to our assessments of whether the policy conclusion 
is the same (Criterion 1).30 The nonexperimental regression estimates are significantly different from 
the experimental benchmark for math with a p-value of 0.03, and very close to statistically significant 
with a p-value of 0.06 for reading (Tables V.1 and V.2). Neither the exact matching estimate nor the 

                                                 
29 Each iteration of the bootstrap uses the same propensity score model, regression specification, and set of exact 

matching covariates. 

30 We note that the null hypothesis is that the experimental and nonexperimental estimates are no different; that is, 
the test is set up such that we require strong statistical evidence to conclude that the nonexperimental estimate differs 
from its experimental benchmark. Structuring the test this way favors the nonexperimental approaches. 
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propensity score estimate is significantly different from the experimental benchmark for math or 
reading. Confidence intervals for the differences between each nonexperimental estimate and its 
experimental benchmark are reported in Figure V.1. 

However, although the regression estimates do not perform quite as favorably in these tests as 
the two matching approaches, the regression estimates were not statistically significantly different 
from the matching estimates, with only one exception on the margin of significance. The p-values of 
the difference between the regression and propensity score approach were 0.42 for math and 0.46 
for reading. The corresponding p-values for the regression-exact matching differences were 0.07 and 
0.49.  

Criterion 2 solely considers evidence of bias in the nonexperimental approaches. As an 
alternative to Criterion 2, we could compare the estimators’ root mean square errors, which consider 
the statistical precision of each estimator as well as the bias. In particular, using root mean square 
errors to compare different estimators could be appropriate in a situation in which an estimator that 
produced an unbiased but imprecise estimate was being compared with an estimator that produced a 
precise estimate that had a modest bias. For an unbiased estimator (such as the experimental 
benchmark), the root mean square error is equal to the standard error. For a biased estimator, the 
root mean square error equals the square root of the standard error squared plus the bias squared. 
Even if an estimator were biased, it could still yield more accurate predictions than an unbiased 
estimator if the biased estimator had much less sampling variability. This is especially notable for the 
nonexperimental regression approach, for which there is evidence of bias but also the smallest 
standard errors of any of the approaches. Based on their respective standard errors, the 
nonexperimental regression approach would have a smaller root mean square error than the 
experimental approach if the bias were 0.034 standard deviations or less. The estimated difference 
between the nonexperimental regression and the experimental benchmark is larger than 0.034, but 
0.034 falls well within the confidence interval of the difference. Similarly, the exact matching and 
propensity score matching approaches would have smaller root mean square errors than the 
experimental benchmarks if their respective biases were less than 0.029 and 0.031. Hereafter, we 
focus on the two criteria that were selected ex ante as the basis on which the nonexperimental 
estimators would be judged. Criterion 2 in particular is a more conventional (and stricter) metric for 
judging the validity of a nonexperimental estimator than is the root mean square error. However, the 
root mean square error is an alternative and useful lens through which to examine the validity of 
nonexperimental estimators.  

As described in Chapters III and IV, the restricted subsample used for the fixed effects analysis 
and its experimental benchmark has a much smaller sample size, so we have less statistical precision 
than with the other analyses. This problem is exacerbated when we look at the difference between 
the two impact estimates. Nevertheless, the difference of 0.11 between the fixed effects and 
experimental estimate of the impact on reading is on the margin of statistical significance (p-value = 
0.09). The corresponding difference for math is not statistically significant. 
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Table V.2. Comparing Experimental Benchmark and Nonexperimental Estimate for Reading 

Models Using Restricted 
Analysis Subsample Models Using Full Analysis Sample 

Propensity 
Score 

Matching 
Experimental 
Benchmark 

OLS 
Regression 

Exact 
Matching 

Experimental 
Benchmark 

Fixed 
Effects 

Estimated Impact 
0.00 

(0.04) 
0.06* 
(0.03) 

0.04 
(0.03) 

0.05 
(0.03) 

-0.14* 
(0.06) 

-0.04 
(0.07) 

Same Policy Conclusion? -- No Yes Yes -- No 

Difference from Exp. 
Benchmark 

-- 0.06
(0.03)

0.04
(0.04)

0.04
(0.04)

-- 0.11 
(0.06) 

p-Value of Difference -- 0.06 0.32 0.25 -- 0.09 

Treatment Sample 630 630 510 552 283 283 

Control/Comparison 
Sample 

296 20,099 4,539 1,898 132 8,688 

Source: Charter School Study (Gleason et al. 2010) and district achievement and demographic data. 

Note: Standard errors for each impact estimate and difference are in parentheses. Standard errors 
for exact matching and propensity score matching impact estimates use bootstrapping as 
described in Chapter IV. Standard errors for the difference between the nonexperimental and 
experimental impact estimates also use bootstrapping as described in this chapter. 

*/** Significantly different from zero at the .05/.01 level. 

OLS = ordinary least squares. 

Figure V.1. 95 Percent Confidence Intervals of Differences Between Nonexperimental Estimates and 
Experimental Benchmarks 
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Note:  Confidence intervals are based on bootstrapped standard errors, as described in the text. 
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B. Sensitivity of Findings to Data Availability, Comparison Group 
Definitions, and Model Specifications 

We next summarize findings from exploratory analyses that examined whether our conclusions 
depend on the exact specifications employed, comparison groups used, or pre-intervention data 
available. We focus on the nonexperimental OLS regression model for practical considerations. 
Specifically, among the three approaches that permit us to use the full analysis sample, the regression 
approach is the only one that does not require computationally intensive bootstrapping to generate 
valid standard errors.31 

Our next exploration examines how sensitive the experimental and nonexperimental regression-
based impact estimates are to the variables included in the regression model. This is informative 
both as a helpful sensitivity check of whether our modeling decisions distorted the results and as a 
means of examining which baseline covariates are most important for reducing bias in the 
nonexperimental estimates.  

The experimental impact estimates are robust to specifications where we do not include any 
interaction terms, where we exclude prebaseline test scores (and any interactions with prebaseline 
test scores), and where we exclude all test scores (baseline and prebaseline) from the regression (first 
two columns of Table V.3). The point estimate for the impact on reading becomes more negative 
when we exclude all covariates from the model, but the difference is not large and the impact 
estimate remains statistically insignificant. The point estimate for the impact on math is not sensitive 
to excluding covariates from the model.  

The impact estimates in the nonexperimental regression are slightly larger when we exclude 
interaction terms (increasing by 0.04 for math and by 0.06 for reading) or when we exclude 
prebaseline test scores (increasing by 0.03 for math and by 0.06 for reading). The importance of 
including at least one year of baseline test scores (including both math and reading scores) is clear. If 
we do not include any test scores in the regression, the impact estimate inflates considerably—
because the students who applied to charter school lotteries are higher achieving, on average, than 
are nonapplicants—confirming that test scores are crucial for reducing bias in nonexperimental 
approaches, as discussed in Chapter I. Moreover, the nonexperimental impact estimates for the 
model that excludes baseline test scores but have all other baseline characteristics are very similar to 
those when no covariates are accounted for at all. 

                                                 
31 In additional exploratory results not shown, we examined whether the failure of the nonexperimental estimate to 

fully replicate the experimental results was driven by one or two isolated sites, for which data on the available 
comparison group might have been unusually poor. As noted in earlier chapters, many sites have small treatment and/or 
control samples. Given the limited degrees of freedom available in many sites, we estimated site-specific impact 
estimates as simple differences in means for the treatment and control (or comparison) groups. We focused this analysis 
on the propensity score estimator because it does not theoretically require regression adjustment for unbiased estimates. 
Given the small sample sizes in several sites, the site-specific impact estimates are correspondingly noisy, but there is no 
evidence that the observed differences between the experimental and nonexperimental impact estimates are 
concentrated in a small subset of sites. 
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Table V.3. Estimates Using Alternative Regression Specifications 

Experimental Nonexperimental Regression 

Math Reading Math Reading 

Main Specification 
-0.01 
(0.04) 

0.00 
(0.04) 

0.06**
(0.02) 

0.06* 
(0.03) 

No Interaction Terms 
-0.01 
(0.05) 

-0.04 
(0.04) 

0.10**
(0.03) 

0.12** 
(0.03) 

Exclude Prebaseline Tests 
-0.01 
(0.05) 

-0.04 
(0.04) 

0.09**
(0.03) 

0.12** 
(0.03) 

Exclude Baseline and Prebaseline 
Tests 

0.00 -0.02 0.46** 0.43** 
(0.07) (0.06) (0.04) (0.04) 

No Covariates 
-0.03 
(0.09) 

-0.07 
(0.07) 

0.51**
(0.04) 

0.47** 
(0.04) 

Note: The treatment, control, and comparison group samples included 629, 295, and 20,335 
students, respectively, for math and 630, 296, and 20,099 students, respectively, for reading. 
Standard errors for each impact estimate are in parentheses. The regression model for our 
main analysis included baseline math and reading test scores, prebaseline math and reading 
test scores, sex, race/ethnicity, FRPL status, ELL status, disability status, and interactions 
between some of these variables. 

*/** Significantly different from zero at the .05/.01 level, two-tailed test. 

ELL = English-language learner; FRPL = free or reduced-price lunch. 

As described in Chapter II, not all sites had prebaseline test scores; our impact estimates use all 
available test score data at the site. Conceivably, prebaseline test scores could be required for the 
nonexperimental approach to be valid. If so, mixing sites for which we do not have prebaseline test 
scores with sites for which we do could lead to the false conclusion that the nonexperimental 
approach is invalid. We explore this possibility by limiting our analysis to the 12 sites for which we 
have prebaseline test scores for most students.32 For this restricted subsample, the estimates are 
similar whether the regression includes or excludes prebaseline test scores (Table V.4). As with our 
main analysis, the impact estimates for reading diverge most strongly. The impact estimates for 
reading among this subsample of sites are actually negative and statistically significant in the 
experimental analysis but positive and insignificant for the nonexperimental regression. The 
difference between the experimental and nonexperimental estimates for reading does increase from 
0.09 when we include prebaseline tests to 0.15 when we exclude them, but the samples are too small 
for us to know if this is a real improvement or just chance. 

                                                 
32 We distinguish this restricted subsample from the more heavily restricted subsample used for the fixed effects 

analysis. The restriction in this paragraph is based on whether the site has prebaseline test scores. In contrast, the 
restriction for the fixed effects analysis requires that every student have all three test scores (prebaseline, baseline, and 
first follow-up). 
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Table V.4. Estimates With and Without Prebaseline Test Scores, Restricted to Sites With Prebaseline 
Scores 

Experimental Nonexperimental Regression 

Math Reading Math Reading 

Estimated Impacts when 
Regression Models Include 
Prebaseline Tests 
Estimated Impacts when 
Regression Models Exclude 
Prebaseline Tests 

-0.05 
(0.05) 

-0.05 
(0.05) 

-0.09* 
(0.05) 

-0.13**
(0.05)

0.04 
(0.03) 

0.04 
(0.03) 

0.00 
(0.03) 

0.02 
(0.03) 

Note: Restricted to 12 sites for which prebaseline test scores are available. Standard errors for each 
impact estimate are in parentheses. The treatment, control, and comparison group samples 
included 384, 212, and 12,347 students, respectively, for math and 385, 212, and 12,331 
students, respectively, for reading. 

*/** Significantly different from zero at the .05/.01 level, two-tailed test. 

Lastly, instead of restricting the pool of comparison students to students in the same baseline 
traditional public schools (TPSs) as treatment group students, we expand the comparison group to 
all students in the same district as a given charter school. Our main analysis assumes that students 
who come from the same feeder schools as charter school attendees are most likely to have similar 
socioeconomic status, educational opportunities, and neighborhood conditions. However, as 
discussed in Chapter II, Bifulco (2010) and Hoxby and Murarka (2007) note that students from the 
same neighborhoods or baseline feeder schools also are more likely to have self-selected out of 
charter schools and so could be fundamentally different. Students from the full district are less likely 
to have willfully opted out of charter schools, perhaps because the charter school is too far for it to 
be a practical option for them or for the students’ parents to be familiar with. Table V.5 presents 
impact estimates for the regression model using the full districts as the comparison group alongside 
results from our main analysis for comparison. The impact estimates using the full district are 
slightly larger than our main analysis for both math (0.08 versus 0.06) and reading (0.07 versus 0.06) 
but not qualitatively different. There is no evidence that using the full district as the comparison 
group would markedly reduce bias for a nonexperimental regression estimator. 

Table V.5. Nonexperimental Regression Estimates for Full District Comparison Group Versus Feeder 
Schools Only 

Math Reading 

Experimental Benchmark 
-0.01 
(0.04) 

0.00 
(0.04) 

Nonexperimental Regression 
Estimate with Feeder School 
Comparison Group 

0.06* 
(0.02) 

0.06*
(0.03)

Nonexperimental Regression 
Estimate with Full-District 
Comparison Group 

0.08** 
(0.02) 

0.07** 
(0.03) 

Note: The treatment, control, feeder school comparison group, and full-district comparison group 
samples included 629, 295, 20,335, and 143,197 students, respectively, for math and 630, 
296, 20,099, and 142,440 students, respectively, for reading. Standard errors for each impact 
estimate are in parentheses. 

*/** Significantly different from zero at the .05/.01 level, two-tailed test. 

 
We also considered the possibility that measurement error in the baseline and prebaseline test 

scores could differentially affect the experimental and nonexperimental estimates of charter school 
impacts. For the experimental estimates, measurement error should be the same, on average, for 
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treatment and control students (that is, treatment status should not be correlated with measurement 
error). In contrast, for the nonexperimental estimates, treatment status could be correlated with 
measurement error, biasing the nonexperimental estimates. The estimates would be upward biased if 
there were a negative correlation between measurement error and treatment status—that is, if 
treatment students’ baseline and prebaseline measured test scores understated their true ability 
relative to the comparison students’ measured test scores. Furthermore, this upward bias from 
measurement error could be why the nonexperimental regression estimates of charter school 
impacts differ from the experimental benchmark. Alternatively, the estimates would be downward 
biased if there were a positive correlation between measurement error and treatment status, in which 
case regression estimates that were not biased by measurement error would actually have even worse 
selection bias than what our estimates suggest. Measurement error could be addressed in the 
regression-based comparison group approach using an errors-in-variables model that accounts for 
the reliability of any test scores that are measured with error. 

However, accounting for test score reliability would likely lead to only small changes in the 
estimated nonexperimental treatment effects. We obtained measures of reliability from four of the 
six states included in the present study for a subset of school years, and the reliability measures of 
these tests were quite high, with Cronbach’s alphas generally in the 0.85 to 0.95 range. With high 
reliability, measurement error is less likely to create substantial measurement error bias. Our models 
also typically include several pretest measures to capture students’ prior achievement. Students 
typically will have both math and reading test score measures from the baseline year, and in many 
cases the models also include their test scores in both subjects from the previous year. Including 
multiple pretest scores dampens the potential influence of measurement error on our estimated 
treatment effects. Considering these factors, and because reliability measures are not available for all 
years and states in our study, we did not estimate errors-in-variables models. Nevertheless, this 
remains an interesting topic to explore in future research. 
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VI. CONCLUDING THOUGHTS AND POSSIBLE EXTENSIONS 

We begin this final chapter by restating the criteria listed by Cook et al. (2008) for a sound within-
study comparison and summarizing how we have met each of their criteria in the present report. We 
then recap our findings and discuss possible extensions. 

A. Revisiting the Criteria for a Within-Study Comparison 

A within-study comparison has to demonstrate variation in the types of methods being 
contrasted—one comparison group has to be constructed via a random assignment 
mechanism and the other by whatever systematic mechanism is under test. 

The present report uses data from the Institute of Education Sciences’ evaluation of charter 
schools, conducted by Mathematica (Gleason et al. 2010), which estimated charter school impacts 
using an experimental design. That study examined charter schools that had more applicants than 
slots; random assignment determined which students were admitted. For about half of the schools 
and students in the charter school study, we were able to obtain the same data for other public 
school students in the same district: that is, students who did not apply for the charter school 
lotteries (but could have). We then conducted two sets of analyses. The treatment group for both 
sets of analyses was the same treatment group as the charter school evaluation, restricted to the sites 
for which we obtained data on students who did not apply for charter schools in the study.33 The 
analyses differ in whether the counterfactual is estimated using an experimental or a 
nonexperimental approach. The benchmark experimental analyses used the randomly assigned 
control group to estimate the counterfactual. The nonexperimental analyses used a comparison 
group of students that did not apply to the charter school lotteries but attended the same feeder 
schools at baseline. We consider four nonexperimental comparison group designs: regression 
models, exact matching on a limited set of pre-intervention covariates, propensity score matching on 
a richer set of pre-intervention covariates, and student fixed effects models. 

The two assignment mechanisms cannot be correlated with other factors that are related to 
the study outcome. 

Crucially, this requirement implies that the data for the treatment, control, and comparison 
group students should come from the same sources and are measured the same way (within a 
district). In this study, the outcome measures and key explanatory variables are standardized test 
scores administered by the states, ensuring that outcomes and covariates are measured consistently 
for the experimental and nonexperimental students. 

Our nonexperimental comparison group is also drawn from the same local area. The 
comparison group is composed of students in the same feeder schools (in our main analyses) or the 
same school district (in a sensitivity analysis), as opposed to drawing a comparison group from a 
geographically disparate population. In making this restriction, we ensure that any observed 
differences between the experimental and nonexperimental analyses are not attributable to 

                                                 
33 By treatment group, we mean the original treatment group considered for the analysis. Some of our analyses, 

particularly the two matching approaches, restricted the analysis sample to treatment students for whom we could 
identify at least one valid match, as described in Chapter IV. 
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fundamental geographic factors (see Heckman et al. 1999; Glazerman et al. 2003; and Cook et al. 
2008 for discussions). 

A quality within-study comparison also has to demonstrate that the randomized experiment 
deserves its status as a causal gold standard. 

Although random assignment is considered the gold standard of evaluation designs, it requires 
careful implementation to produce valid impact estimates, as discussed in Chapter I. The present 
study has the advantage of being based on a strong experimental evaluation. The study by Gleason 
et al. (2010) met the What Works Clearinghouse (WWC) standards for experimental studies, and the 
WWC quick review stated that “the study is a well-implemented randomized controlled trial.”34 
Random assignment was well implemented; there were minimal baseline differences between the 
treatment and control groups; attrition was low and similar for the treatment and control groups; 
and the crossover rate was low. We based our study on a subsample of the charter school evaluation, 
but we confirmed that these characteristics held in our analysis samples, discarding one site in which 
there was evidence of higher attrition rates for the control group. 

It is also important that the nonexperiment be a good example of its type. 

The credibility of a nonexperimental design hinges first on the quality of the data available to 
the researcher. Baseline measures of the key outcomes are very important for a nonexperimental 
design to produce unbiased estimates because many of the factors that are theoretically correlated 
with both key outcomes and the selection process for a given program but not directly observed do 
not vary greatly with time, in which case pre-intervention measures of the key outcomes can account 
for those factors (Heckman et al. 1999; Cook et al. 2008). A prospective advantage of 
nonexperimental designs in education contexts is the availability of pre-intervention measures (that 
is, pretest scores) that are highly predictive of the outcomes of interest (follow-up test scores) and 
are also likely to be highly correlated with factors affecting selection into a school type, such as 
parent/student motivation or parental engagement with the student. We have baseline measures for 
all students in our analysis sample and prebaseline measures for many. The sensitivity analyses in 
Chapter V confirm that baseline measures are indeed crucial for removing much of the bias in 
nonexperimental estimators. Having additional test scores from even earlier years or measures of 
other confounding factors could further reduce hidden biases. However, we find that controlling for 
prebaseline test scores does not appreciably change the nonexperimental impact estimates compared 
with controlling only for baseline test scores (in both reading and math). 

Conditional on the data available to the researcher, the success of the nonexperimental design 
might also depend on what the researcher does with the data. Because there is no consensus view on 
which analytical method is superior, we explored four popular nonexperimental methods. There are 
also no consensus views on how to implement each of the methods we study. For example, the 
regression and propensity score matching approaches both theoretically require the researcher to 
correctly specify the relationship between the baseline covariates and the outcome measure 
(regression) or the relationship between the baseline covariates and the propensity to apply to a 
charter school (propensity score matching). But there are numerous ways of specifying these models, 

                                                 
34 Available at http://ies.ed.gov/ncee/wwc/publications/quickreviews/QRReport.aspx?QRID=160, 

accessed March 30, 2011. 
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and no clear guidance on which is the best example of its type. Thus, as described in Chapter IV, we 
used systematic model selection algorithms to determine the empirical specifications and compared 
the resulting models with those produced by other algorithms. We also examined the sensitivity of 
our results to simpler specifications that did not involve higher-order interaction terms to determine 
the extent to which a researcher’s decisions on model specification could alter the findings. 

An experiment and nonexperiment should estimate the same causal quantity. 

We designed the experimental and nonexperimental analyses to estimate the impact of an offer 
to attend a study charter school on the student’s test scores in the first follow-up year. Not all 
students accepted the offer to attend a charter school, so our estimated impact (the intent to treat, or 
ITT) differs from the estimated impact on students who actually attended (the impact of treatment 
on the treated, or TOT). In practice, most experimental studies will focus on the ITT, whereas 
nonexperimental analyses only estimate the TOT, because the students who declined offers to 
attend charter schools are typically not known. As discussed in Chapter III, we focus on the ITT 
because it is the parameter for which the experimental benchmark, subject to the considerations 
discussed earlier, is a causal gold standard. Our context is unusual relative to most nonexperimental 
designs in that we can actually estimate the ITT for the nonexperimental analyses as well, ensuring 
that the parameters estimated using the two methods are the same. 

A within-study comparison should be explicit about the criteria it uses for inferring 
correspondence between experimental and nonexperimental results. 

We use qualitative and quantitative criteria to determine whether the experimental and 
nonexperimental results correspond. Qualitatively, we first assess whether researchers would draw 
the same policy conclusions from the nonexperimental results and the experimental benchmark. Are 
the results of similar significance levels? If so, are they of the same sign? Are the magnitudes similar? 
Quantitatively, we estimate the difference between the experimental and nonexperimental estimates 
of charter school impacts (along with its standard error) and test whether any observed difference 
between the two results was statistically significant. The null hypothesis for this test is that the two 
estimates are the same. 

The data analyst should perform the nonexperimental analyses before learning the results of 
the experimental ones. 

We based our study on data from the charter school study led by Philip Gleason, who is also on 
the team for this study. The present study uses a subset of the study charter schools and slightly 
different empirical specifications, and it focuses on first-year follow-up test scores rather than scores 
from the second year, so the results would not necessarily correspond to those of the original study. 
We completed our nonexperimental analyses before seeing the benchmark findings for the 
experimental analysis.  

B. Summary of Findings and Possible Extensions 

We draw three key lessons from the evidence presented in this study: 

1. Pre-intervention data that are strongly predictive of the key outcome measures 
considerably reduced but did not completely eliminate bias from 
nonexperimental estimators that rely on parametric assumptions. For our analyses 
using the full analysis sample, the nonexperimental regression model estimated different 
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impacts compared with the experimental benchmark, and the two estimates are 
significantly different. On the other hand, the bias—the difference between the 
nonexperimental and experimental impact estimates—does not appear to be large. The 
statistically significant impact estimate from the regression model is not large (0.06 for 
both math and reading) compared with the near-zero experimental benchmark. The 
regression model also comes considerably closer to replicating the experimental 
benchmark when we control for baseline test scores than when we do not. We use a 
restricted subsample to test a student fixed effects model and find that its estimated 
impacts are appreciably different from its experimental benchmark for one of the test 
scores (reading) but not the other (math), though the sample sizes are small for the 
restricted subsample used to estimate the fixed effects and corresponding experimental 
model. 

2. Estimated impacts using matching estimators and rich pre-intervention data 
were not statistically different from their experimental benchmarks. Estimates 
using the exact matching and propensity score matching methods were not statistically 
significantly different from our experimental benchmark estimates. However, the 
matching and regression-based estimates are not greatly different from one another: For 
example, the difference between the estimated nonexperimental impact and the 
experimental benchmark is 0.06, 0.04, and 0.05 for regression, exact matching, and 
propensity score matching, respectively. Hence, bias may remain in the matching 
estimates, but the bias is too small to reliably detect without very large sample sizes. The 
estimated impacts using matching are not significantly different from the regression 
model, either. 

3. These findings were robust to the model specifications, type of pre-intervention 
data, and comparison group used in the analysis. Our findings do not appreciably 
change when we consider alternative model specifications that would conceivably reduce 
bias in the nonexperimental estimates. As noted earlier, the most important factor to 
account for in the nonexperimental analysis is baseline test scores; controlling for 
baseline test scores in both reading and math reduces the difference between the 
experimental and nonexperimental estimates to less than a quarter of the bias when no 
pre-intervention test scores are used. Conditional on controlling for baseline test scores, 
however, there is no evidence that controlling for a second year of pre-intervention test 
scores further reduces bias. There is some evidence that bias is worsened by removing 
interaction terms in the regression model but, overall, there is not strong evidence that 
the empirical decisions the researcher makes for how to analyze the data greatly 
influence the impact estimates. Lastly, widening the pool of comparison students to the 
whole school district, rather than just students in the same baseline feeder schools as the 
treatment group, does not change our core findings. 

In our analysis, we have focused on what our understanding of the literature on 
nonexperimental comparison group designs suggests are the methods most likely to reproduce the 
findings from a well-implemented experimental design. Limiting the scope avoids a fishing 
expedition—or the perception thereof—in which many estimates are produced, some of which 
provide different answers than others by random chance.  

There remain a number of possible extensions that future research could explore. Conducting a 
within-study comparison with larger sample sizes for the experimental treatment and control groups 
would help to distinguish estimators that reliably replicate the experimental estimates from those 
with small amounts of bias. In our sensitivity analyses, we focused on changes to the set of variables, 
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analysis sample, or specification used for the regression model, which is the simplest and 
computationally easiest to adjust (because it does not rely on bootstrapping for valid statistical 
inference). Future research could instead examine how these changes in the variables or sample 
available would affect the findings for matching-based estimators, which came closer to replicating 
the experimental benchmark than did the regression approach. Another extension that could be 
explored would be how the nonexperimental and experimental estimates of the TOT parameter 
compare, rather than the ITT parameter on which we have focused.  

More broadly, conducting within-study comparisons in different contexts would be a valuable 
extension. A limitation of our analysis (and of any within-study comparison) is that the results may 
be driven by some idiosyncratic characteristic of the conditions under which it has been conducted. 
In other words, the results we present here may not be replicated in other contexts. Contexts that 
would be of greatest value for additional research are those that share many of the same features as 
the present study—strongly predictive pre-intervention data that plausibly account for the selection 
mechanism, broad geographic scope, and adherence to replication standards—but for which the 
intervention is substantively different or the experimental impact estimates are larger (positive or 
negative) than the impact estimates for charter schools. Within-study comparisons conducted in 
these contexts would help in assessing whether the findings from the present study are attributable 
to features of the methodological approach used in the study itself or just the particular context. 
Another valuable avenue for future research would be to use rich data sets containing variables not 
usually available to researchers (such as direct measures of parental motivation or a workers’ 
cognitive abilities) to assess correlations between these factors and other variables that are more 
commonly available to researchers (such as students’ pre-intervention test scores, workers’ pre-
intervention earnings, or basic demographic information). Conducting this correlational analysis 
would help researchers understand how well common baseline variables are accounting for the 
harder to measure factors that are theorized to underlie the selection process for social programs 
and, consequently, may bias nonexperimental impact estimates. 



References  Mathematica Policy Research 

48  

REFERENCES 

Abadie, A., and G. Imbens. “On the Failure of the Bootstrap for Matching Estimators.” 
Econometrica, vol. 76, no. 6, 2008, pp. 1537–1557. 

Abadie, A., and G. Imbens. “Bias-Corrected Matching Estimators for Average Treatment Effects.” 
Journal of Business and Economic Statistics, vol. 29, no. 1, 2011, pp. 1–11. 

Abdulkadiroglu, A., J. Angrist, S. Cohodes, S. Dynarski, J. Fullerton, T. Kane, and P. Pathak. 
“Informing the Debate: Comparing Boston’s Charter, Pilot, and Traditional Schools.” Boston, 
MA: The Boston Foundation, 2009. 

Agodini, R., and M. Dynarski. “Are Experiments the Only Option? A Look at Dropout Prevention 
Programs.” Review of Economics and Statistics, vol. 86, no. 1, 2004, pp. 180-194. 

Angrist, J., G. Imbens, and D. Rubin. “Identification of Causal Effects Using Instrumental 
Variables.” Journal of the American Statistical Association, vol. 91, no. 434, 1996, pp. 444–472. 

Angrist, J., S. Cohodes, S. Dynarski, J. Fullerton, T. Kane, P. Pathak, and C. Walters. “Student 
Achievement in Massachusetts’ Charter Schools.” Cambridge, MA: Center for Education Policy 
Research, Harvard University, 2011. 

Bifulco, R. “Can Propensity Score Analysis Replicate Estimates Based on Random Assignment in 
Evaluations of School Choice? A Within-Study Comparison.” Center for Policy Research 
Working Paper No. 124. Syracuse, NY: Center for Policy Research, 2010. 

Bifulco, R., and H. Ladd. “The Impact of Charter Schools on Student Achievement: Evidence from 
North Carolina.” Journal of Education Finance and Policy, vol. 1, no. 1, 2006, pp. 50–90. 

Black, D., and J. Smith. “How Robust Is the Evidence on the Effects of College Quality? 
Evidence from Matching.” Journal of Econometrics, vol. 121, 2004, pp. 99–124. 

Bloom, H., C. Hill, A. Black, and M. Lipsey. “Performance Trajectories and Performance Gaps as 
Achievement Effect-Size Benchmarks for Educational Interventions.” New York: MDRC 
Working Paper, 2008.  

Bloom, H., C. Michalopoulos, and C. Hill. “Using Experiments to Assess Nonexperimental 
Comparison Group Methods for Measuring Program Effects.” In Learning More from Social 
Experiments, edited by H. Bloom (pp. 172–235). New York: Russell Sage Foundation, 2005. 

Booker, T. K., S.M. Gilpatric, T. J. Gronberg, and D. W. Jansen. “The Impact of Charter School 
Student Attendance on Student Performance.” Journal of Public Economics, vol. 91, nos. 5–6, 2007, 
pp. 849–876. 

Center for Research on Education Outcomes. “Multiple Choice: Charter School Performance in 
16 States.” Palo Alto, CA: CREDO, Stanford University, 2009. 

Cook, T., W. Shadish, and V. Wong. “Three Conditions Under Which Experiments and 
Observational Studies Produce Comparable Causal Estimates: New Findings from Within-
Study Comparisons.” Journal of Policy Analysis and Management, vol. 27, no. 4, 2008, pp. 724–750. 



References  Mathematica Policy Research 

49  

Dehejia, R., and S. Wahba. “Causal Effects in Nonexperimental Studies: Reevaluating the Evaluation 
of Training Programs.” Journal of the American Statistical Association, vol. 94, 1999, pp. 1053–1062. 

Fraker, T., and R. Maynard. “The Adequacy of Comparison Group Designs for Evaluations of 
Employment-Related Programs.” Journal of Human Resources, vol. 41, 1987, pp. 194–227. 

Friedlander, D., and P. Robins. “Evaluating Program Evaluations: New Evidence on Commonly 
Used Nonexperimental Methods.” American Economic Review, vol. 85, no. 4, pp. 923-937. 

Glazerman, S., D. Levy, and D. Myers. “Nonexperimental Versus Experimental Estimates of 
Earnings Impacts.” Annals of the American Academy, vol. 589, 2003, pp. 63–93. 

Gleason, P., M. Clark, C. Tuttle, and E. Dwoyer. “The Evaluation of Charter School Impacts.” 
National Center for Education Evaluation and Regional Assistance 2010-4029. Washington, 
DC: NCEE, Institute of Education Sciences, U.S. Department of Education, 2010. 

Hanushek, E., J. Kain, S. Rivkin, and G. Branch. “The Impact of Charter Schools on Academic 
Achievement.” National Bureau of Economic Research Working Paper 11252. Washington, 
DC: NBER, 2005. 

Heckman, J., R. Lalonde, and J. Smith. “The Economics and Econometrics of Active Labor Market 
Programs.” In Handbook of Labor Economics, vol. 3A, edited by O. Ashenfelter and D. Card. 
Amsterdam: Elsevier, 1999. 

Heckman, J., and P. Todd. “A Note on Adapting Propensity Score Matching and Selection Models 
to Choice Based Samples.” Institute for Study of Labor Discussion Paper 4304, July 2009.  

Hoxby, Caroline, and Sonali Murarka. “Methods of Assessing the Achievement of Students in 
Charter Schools: Their Growth and Outcomes.” Mahwah, NJ: Lawrence Erlbaum Associates, 
2007. 

Hoxby, C. “A Statistical Mistake in the CREDO Study of Charter Schools.” Stanford University, 
Unpublished manuscript, August 2009. 

Imbens, G., and J. Wooldridge. “Recent Developments in the Econometrics of Program 
Evaluation.” Journal of Economic Literature, vol. 47, no. 1, 2009, pp. 5–82. 

Lalonde, R. “Evaluating the Econometric Evaluations of Training with Experimental Data.” 
American Economic Review, vol. 76, 1986, pp. 604–620. 

Lechner, M. “An Evaluaton of Public-Sector-Sponsored Continuous Vocational Training Programs 
in East Germany.” Journal of Human Resources, vol. 35, no. 2, 1999, pp. 347–375. 

Little, R. J., and D. B. Rubin. “Causal Effects in Clinical and Epidemiological Studies via Potential 
Outcomes: Concepts and Analytical Approaches.” Annual Review of Public Health, vol. 21, 2000, 
pp. 121–145. 

McCrary, J. “Using Electoral Cycles in Police Hiring to Estimate the Effect of Police on Crime, 
Comment.” American Economic Review, vol. 92, no. 4, 2002, pp. 1236–1243. 



References  Mathematica Policy Research 

50  

 

Peikes, D., L. Moreno, and S. Orzol. “Propensity Score Matching: A Note of Caution for Evaluators 
of Social Programs.” American Statistician, vol. 62, no. 3, 2008, pp. 222–231. 

Puma, M., R. Olsen, S. Bell, and C. Price. “What to Do When Data Are Missing in Group 
Randomized Controlled Trials.” National Center for Education Evaluation and Regional 
Assistance 2009-0049. Washington, DC: NCEE, Institute of Education Sciences, 
U.S. Department of Education, 2009. 

Rosenbaum, P. R., and D. B. Rubin. “The Central Role of Propensity Score in Observational Studies 
for Causal Effects.” Biometrika, vol. 70, no. 1, 1983, pp. 41–55. 

Rothstein, J. “Does Competition Among Public Schools Benefit Students and Taxpayers? A 
Comment on Hoxby (2000).” American Economic Review, vol. 97, no. 5, December 2007, 
pp. 2026–2037. 

Schochet, P. “Is Regression Adjustment Supported by the Neyman Model for Causal Inference?” 
Princeton, NJ: Mathematica Policy Research, 2007. 

Schochet, P. “Statistical Power for Random Assignment Evaluations of Education Programs,” 
Journal of Educational and Behavioral Statistics, vol. 33, no. 1, pp. 62–87, 2008. 

Shadish, W., M. Clark, and P. Steiner. “Can Nonrandomized Experiments Yield Accurate Answers? 
A Randomized Experiment Comparing Random and Nonrandom Assignments.” Journal of the 
American Statistical Association, vol. 103, 2008, pp. 1334–1356. 

Smith, J., and P. Todd. “Does Matching Overcome LaLonde’s Critique of Nonexperimental 
Estimators?” Journal of Econometrics, vol. 125, 2005, pp. 305–353. 

Wilde, E., and R. Hollister. “How Close is Close Enough? Evaluating Propensity Score Matching 
Using Data from a Class Size Reduction Experiment.” Journal of Policy Analysis and Management, 
vol. 26, pp. 455-477. 

Zimmer, R., B. Gill, K. Booker, S. Lavertu, T. Sass, and J. Witte. “Charter Schools in Eight States: 
Effects on Achievement, Attainment, Integration, and Competition.” Rand Education 
Monograph. Santa Monica, CA: Rand Corporation, 2009. 



Appendix A. Sample Weights  Mathematica Policy Research 

A-1 

APPENDIX A. SAMPLE WEIGHTS 

In this appendix, we describe the calculation of the student-level sample weights for this study. 
We designed the weights to account for the unequal probability of selection into the treatment 
group in the Institute for Education Sciences’ charter school study, conducted by Mathematica 
(Gleason et al. 2010), on which our study is based, and to ensure that the experimental and 
nonexperimental approaches estimate the same parameter. 

For each approach, we began with the sample weights from the Charter School Study. These 
student-level sample weights were designed to adjust for unequal likelihoods of students winning 
their lotteries and getting selected into the treatment group (see Gleason et al. 2010, Appendix B, for 
more detail). However, the experimental study treated each site as a mini-experiment; the authors 
calculated site-specific impact estimates and then weighted them equally to calculate the pooled 
impact estimate. Our goal was to maximize the precision of the impact estimates while also 
estimating the same parameter across the experimental and the four nonexperimental approaches 
used. We used sample weights that weighted each study site proportional to the size of the treatment 
group used to estimate the experimental impact estimates in that site. Thus, within each site, we 
adjusted the sample weights for the control or comparison students to sum to the weighted sum of 
the treatment students for the experimental approach. The weights were then normalized such that 
they summed to the total sample size used in our analyses. 

The rest of this appendix is organized into three sections. In Section A, we discuss the 
construction of the weights used in the experimental benchmark models. We applied the same basic 
procedure to calculate the weights for the regression-based comparison group approach and the 
fixed effects approach, which assume that the comparison students are exchangeable within a given 
site. We discuss these weights, referred to as regression weights, in Section B. In Section C, we 
explain the construction of the weights for the exact matching approach and the propensity score 
matching (PSM) approach. 

A. Experimental Weights 

To construct the sample weight, w exp
ij  for student i in site j in the experimental approach, we 

began by assigning each treatment student his or her sample weight from the Charter School Study, 
we

ij , which adjusts for the probability of selection into the treatment group, as shown in Equation 

(A.1). To ensure that the sample weights are proportional to the weighted size of the treatment 
group, each control student received his or her sample weight from the Charter School Study scaled 

by the sum of the weights for all treatment students in that site ( )Tj  divided by the sum of the 

weights for all control students ( )C j  in that site (Equation [A.2]): 
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These weights were then normalized to sum to the total sample size by multiplying them by 
N exp

, where Nexp  control students) used to 
 j i

w exp
 is the size of the sample (including treatment and

ij

estimate the experimental impact. Because the samples were nearly the same for the math and 
reading outcomes, we used one set of experimental weights for both outcomes. 

To estimate our experimental benchmark model for the fixed effects approach, we restricted 
the experimental sample to students who have three test scores in a given subject, that is, test scores 
from the prebaseline, baseline, and first follow-up years (see Chapter III for more detail). Because 
this restricted subsample was less than half the size of the full sample, a separate set of weights was 
calculated for the restricted subsample. These were calculated following the same procedure, but 
used the sample size of the restricted subsample in normalizing the weights. 

B. Regression Weights 

As discussed in Chapter IV, for the regression-based comparison group analyses we used a 
sample consisting of students who “won” the lottery and were offered admissions to the charter 
schools (that is, the treatment students from the charter school study) and the comparison students 
who did not participate in the lottery and did not attend a charter school. Similar to the experimental 
weights, we began by assigning each treatment student his or her sample weight from the charter 
school study (Equation [A.1]). Within a site, we assumed that the comparison students are 
exchangeable and assigned each an equal weight. This weight was calculated as the ratio of the total 
weight of the treatment students in that site divided by the number of comparison students in the 
site (Equation [A.3]): 

(A.3) 
∈

=


,
jreg

ij comp

j

e
kj

k T
w

N

w

 

where Ncomp
j  is the sample size of the comparison group in site j. Because the same treatment 

students were used in the experimental and regression-based comparison group analyses, this 
ensured that the sites contributed the same amount of information to the overall impact estimates 
for both approaches. These weights were then normalized to sum to the total sample size by 

                                                 
1 Due to small sample sizes, two sites from the Charter School Study were collapsed to enable bootstrapping, as 

described in Chapter V. The sites we refer to here are the result of that process. 
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multiplying them by 
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, where N reg  is the total size of the sample used to estimate the 
 j i

w
ij

nonexperimental regression impact estimates. 

A separate set of weights, based on the restricted subsample, was calculated for the fixed effects 
approach. Similar to the experimental approach, the same weights were used for both math and 
reading outcomes. 

C. Matching Weights 

The analysis for the two matching approaches—the exact matching approach and the PSM 
approach—used the subsamples of treatment and comparison students for which we were able to 
find acceptable matches. A treatment student could potentially be matched to multiple comparison 
students within his or her site and vice versa (see Chapter IV for more detail). This made the 
calculation of the weights more challenging, but the underlying concepts are the same as those 
described in Sections A and B. 

We began by assigning each matched treatment student his or her sample weight we
ij  from the 

Charter School Study (Equation [A.1]). However, because treatment students could be matched to 
different numbers of comparison students, the weight for a given set of comparison students had to 
represent the weight of the treatment student to whom they were matched. In the simplest case, if a 
comparison student was the only student matched to a given treatment student and the comparison 
student was not matched to any other students, the comparison student’s weight was the same as the 
treatment student’s. When a comparison student was matched to only one treatment student but 
there were multiple matched comparison students for that treatment student, the comparison 
student was assigned the weight equal to the “part” of the treatment students that they represented, 
that is, the weight of the treatment student divided by the number of comparison students to which 
that treatment student was matched. In a more complex case, when a comparison student was 
matched to multiple treatment students, he or she was assigned a weight that represented the sum of 
the parts of the treatment students to which this comparison student was matched (Equation [A.4]): 

(A.4) { }
∈

×
= 

1  and  are matched
,

jk T

e
kjmatch

ij
kj

ij kj w
w

n
 

where 1  a{ij nd kj  are matched}  equals 1 if comparison student i and treatment student k in site j are 
matched and 0 otherwise, and nkj  is the number of comparison students to whom treatment student 

k in site j was matched. 

To ensure that each site contributed the same amount of information as in the experimental 
analyses to the overall impact estimate, we then scaled the weights of the treatment group students 

 we
kj

for whom we identified a match in each site by the factor 
k T∈


j

w e
,  where the numerator is the 

kj
k T∈ j m, atched

same as in Equation (A.2), that is, the sum of the weights for the full treatment sample in site j, and 
the denominator differs only in that it is summing across the treatment students for whom we 

identified a match in the site ( )T j m, atched . The comparison group weights in each site were likewise 
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match kj  is the sum of weights for the matched 

wkj k C∈ omp j m, atched

k C∈ omp j m, atched

comparison group in site j. These new weights were then normalized to sum to the total sample size 
N match

in the analyses by multiplying them by ,  where N match  
match

is the total size of the sample used 
 j i wij

to estimate the impact estimates for the matching approach and   w match

j i ij
 is the sum of the 

scaled weights. A separate set of weights was calculated for each matching approach and for each 
outcome of interest, for a total of four matching weights. 
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APPENDIX B. SUPPLEMENTAL TABLES 

Table B.1. Baseline Covariates for the Restricted Experimental Sample 

 Treatment Group 
(N = 282) 

Math Reading 

Control Group 
(N = 132) 

p-Value of 
aDifference  

Treatment Group 
(N = 283) 

Control Group 
(N = 132) 

p-Value of 
Difference 

Prior Test Scores Mean SD Mean SD Mean SD Mean SD 
Baseline Math 0.52 0.89 0.33 0.88 0.14 0.52 0.89 0.33 0.88 0.13 
Prebaseline Math 0.48 0.99 0.39 0.93 0.43 0.47 1.00 0.39 0.93 0.47 
Baseline Reading 0.44 0.97 0.26 0.82 0.10 0.44 0.97 0.26 0.82 0.11 
Prebaseline Reading 0.43 0.98 0.35 0.69 0.40 0.42 0.98 0.35 0.69 0.44 

B
-1 

Other Baseline Covariates Percentage Percentage  Percentage Percentage  
Grade  0.80  0.80 

4th 18 17  18 17  
5th 82 83  82 83  
6th 0 0  0 0  

Sex  0.06  0.06 
Female 44 18  44 18  
Male 56 82  56 82  

Race/Ethnicity  0.06  0.05 
Black, Non-Hispanic 9 6  10 6  
Hispanic 24 13  24 13  
White/Other 67 81  67 81  

FRPL-Eligible  0.90  0.88 
Yes 37 36  37 36  
No 63 64  63 64  

IEPa  0.97  0.92 
Yes 26 26  25 26  
No 74 74  75 74  

English-Language Learner  0.19  0.19 
Yes 5 2  5 2  
No 95 98  95 98  

Missing Value Indicators Percentage Percentage  Percentage Percentage  
Baseline Math 0 0 1.00 3 0 0.88 
Prebaseline Math 0 0 1.00 0 0 1.00 
Baseline Reading 1 0 0.40 0 0 1.00 
Prebaseline Reading 1 0 0.29 0 0 1.00 
Sex 70 68 0.83 69 68 0.88 
Race/Ethnicity 10 10 0.84 10 10 0.83 

Source: Charter School Study (Gleason et al. 2010) and state or district achievement and demographic data. 

Note: This table presents descriptive statistics based on weighted estimates of means, standard deviations, and percentages. To be included in the analysis a 
treatment or control student must have a score for the outcome, the baseline test score, and the prebaseline test score. Percentages in this table might 
not sum to 100 due to rounding. All means are based on nonmissing values of the covariate. 

a Reported p-values for test scores and missing data indicators are from two-tailed t-tests. Reported p-values for categorical variables are from chi-square tests. 
b FRPL indicates free or reduced-priced lunch status; IEP is individualized education plan, an indicator of a student with mental or physical disabilities. 
c High percentages of missing values for some of the covariates are due to the lack of these data across one or more of the sites. 

*/** Significantly different from zero at the .05/.01 level. 

SD = standard deviation. 

N = sample size.  
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Table B.2. Baseline Covariates for the Full Nonexperimental Sample and the Exact Matched Sample: Reading 

Full Nonexperimental Sample Sample Used for Exact Matching Analysis 

Treatment Group 
(N = 630) 

Comparison Group 
(N = 20,099) 

p-Value of 
Differencea 

Treatment Group 
(N = 510) 

Comparison Group 
(N = 4,539) 

p-Value of 
Difference 

Prior Test Scores Mean SD Mean SD Mean SD Mean SD 
Baseline Math 0.52 0.96 0.04 0.97 0.00** 0.49 0.89 0.48 0.89 0.96 
Prebaseline Math 0.49 0.99 0.12 0.98 0.00** 0.41 0.94 0.47 0.93 0.43 
Baseline Reading 0.43 0.94 0.00 0.96 0.00** 0.37 0.86 0.37 0.86 1.00 
Prebaseline Reading 0.46 0.99 0.03 0.97 0.00** 0.37 0.95 0.37 0.92 1.00 

B
-2 

Other Baseline Covariates  Percentage  Percentage   Percentage  Percentage  
Grade 0.00**    0.99 

4th  37  31 35  35 
5th  55  54 53  53 
6th  9  15 12  12 

Sex 0.28    0.46 
Female  47  50 46  50 
Male  53  50 54  50 

Race/Ethnicity  0.00**    0.00** 

Black, Non-Hisp anic  
Hispanic  

12 
19 

22  
 26 

14 
19 

18  
 22 

White/Other  69  52 67  59 
bFRPL-Eligible  

Yes 33  47
0.00** 
  

 
33  40 
   0.01* 

 
No  67  53 67  60 

IEPb 0.00**    0.00** 
Yes  26  18 27  14 
No  74  82 73  86 

English-Language Learner  

 

0.02*    0.57 
Yes  3  5 3  2 
No  97  95 97  98 

Missing Value Indicatorsc  Percentage  Percentage  Percentage Percentage 
Baseline Math  4  0 0.00**  1  0 0.22 
Prebaseline Math  53  55 0.32  55  54 0.63 
Baseline Reading  4  3 0.01*  0  0 1.00 
Prebaseline Reading  53  55 0.34  55  54 0.55 
Sex  36  34 0.30  35  33 0.40 
Race/Ethnicity  8  5 0.00**  9  4 0.00** 

Source: Charter School Study (Gleason et al. 2010) and district achievement and demographic data. 

Note: As described in the text, the specification used for the exact matching impact estimates reported in the text only matches on a subset of covariates, which are 
indicated in bold italics. This table presents descriptive statistics based on weighted estimates of means, standard deviations, and percentages. To be included in 
the analysis a treatment or comparison student must have a score for the outcome and at least one (of the two) baseline test scores. Percentages in this table 
might not add to 100 due to rounding. All means are based on nonmissing values of the covariate. 

a Reported p-values for test scores and missing data indicators are from two-tailed t-tests. Reported p-values for categorical variables are from chi-square tests. 
b FRPL indicates free or reduced-priced lunch status; IEP is individualized education plan, an indicator of a student with mental or physical disabilities. 
c High percentages of missing values for some of the covariates are due to the lack of these data across one or more of the sites. 

*/** Significantly different from zero at the .05/.01 level. 

SD = standard deviation.  

N = number. 
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Table B.3. Baseline Covariates for the Full Nonexperimental Sample and the Propensity Score Matched Sample: Reading 

Full Nonexperimental Sample Sample Used for Propensity Score Matching Analysis 

Treatment Group 
(N = 630) 

Comparison Group 
(N = 20,099) 

p-Value of 
Differencea 

Treatment Group 
(N = 510) 

Comparison Group 
(N = 1,898) 

p-Value of 
Difference 

Prior Test Scores Mean SD Mean SD Mean SD Mean SD 
Baseline Math 0.52 0.96 0.04 0.97 0.00** 0.48 0.88 0.48 0.88 0.94 
Prebaseline Math 0.49 0.99 0.12 0.98 0.00** 0.42 0.94 0.48 0.92 0.45 
Baseline Reading 0.43 0.94 0.00 0.96 0.00** 0.37 0.86 0.37 0.86 0.96 
Prebaseline Reading 0.46 0.99 0.03 0.97 0.00** 0.38 0.95 0.38 0.91 0.97 

B
-3 

Other Baseline Covariates  Percentage  Percentage   Percentage  Percentage  
Grade 0.00**    0.93 

4th  37  31 38  38 
5th  55  54 52  51 
6th  9  15 10  10 

Sex 0.28    0.92 
Female  47  50 48  48 
Male  53  50 52  52 

Race/Ethnicity  0.00**    0.99 
Black, Non-Hispanic  12  22 13  12 
Hispanic  
White/Other  

19 
69 

26 
 52 

18 
69 

18 
 70 

bFRPL-Eligible  0.00**    0.70 
Yes  33  47 33  34 
No  67  53 67  66 

IEPb 0.00**    0.77 
Yes  26  18 25  26 
No  74  82 75  74 

English-Language Learner     0.02* 0.57 
Yes  3  5   2  3  
No  97  95   98  97  

 Missing Value Indicatorsc  Percentage  Percentage   Percentage Percentage  
Baseline Math  4  0 0.00**  1  0 0.19 
Prebaseline Math  53  55 0.32  53  53 0.95 
Baseline Reading  4  3 0.01*  2  1 0.49 
Prebaseline Reading  53  55 0.34  54  53 0.97 
Sex  36  34 0.30  33  33 0.87 
Race/Ethnicity  8  5 0.00**  5  4 0.81 

Source: Charter School Study (Gleason et al. 2010) and district achievement and demographic data. 

Note: This table presents descriptive statistics based on weighted estimates of means, standard deviations, and percentages. To be included in the analysis a treatment 
or comparison student must have a score for the outcome and at least one (of the two) baseline test scores. Percentages in this table might not add to 100 due to 
rounding. All means are based on nonmissing values of the covariate. 

a Reported p-values for test scores and missing data indicators are from two-tailed t-tests. Reported p-values for categorical variables are from chi-square tests. 

b FRPL indicates free or reduced-priced lunch status; IEP is individualized education plan, an indicator of a student with mental or physical disabilities. 

c High percentages of missing values for some of the covariates are due to the lack of these data across one or more of the sites. 

*/** Significantly different from zero at the .05/.01 level. 

SD = standard deviation. 

N = number. 
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